Calcolo Esempi

Trovare la Primitiva (3x-2)/((x-2)^2)
Passaggio 1
Scrivi come funzione.
Passaggio 2
È possibile trovare la funzione determinando l'integrale indefinito della derivata .
Passaggio 3
Imposta l'integrale per risolvere.
Passaggio 4
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 4.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 4.1.1
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 4.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 4.1.3
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 4.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.4.1
Elimina il fattore comune.
Passaggio 4.1.4.2
Dividi per .
Passaggio 4.1.5
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.5.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.5.1.1
Elimina il fattore comune.
Passaggio 4.1.5.1.2
Dividi per .
Passaggio 4.1.5.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.1.5.2.1
Scomponi da .
Passaggio 4.1.5.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.1.5.2.2.1
Moltiplica per .
Passaggio 4.1.5.2.2.2
Elimina il fattore comune.
Passaggio 4.1.5.2.2.3
Riscrivi l'espressione.
Passaggio 4.1.5.2.2.4
Dividi per .
Passaggio 4.1.5.3
Applica la proprietà distributiva.
Passaggio 4.1.5.4
Sposta alla sinistra di .
Passaggio 4.1.6
Riordina e .
Passaggio 4.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 4.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 4.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 4.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 4.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 4.3.1
Riscrivi l'equazione come .
Passaggio 4.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 4.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.2.2.1
Moltiplica per .
Passaggio 4.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 4.3.3.1
Riscrivi l'equazione come .
Passaggio 4.3.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.3.3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 4.3.3.2.2
Somma e .
Passaggio 4.3.4
Risolvi il sistema di equazioni.
Passaggio 4.3.5
Elenca tutte le soluzioni.
Passaggio 4.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 4.5
Rimuovi lo zero dall'espressione.
Passaggio 5
Dividi il singolo integrale in più integrali.
Passaggio 6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 7
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 7.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 7.1.1
Differenzia .
Passaggio 7.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 7.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 7.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 7.1.5
Somma e .
Passaggio 7.2
Riscrivi il problema utilizzando e .
Passaggio 8
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 8.1
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 8.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 8.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 8.2.2
Moltiplica per .
Passaggio 9
Secondo la regola di potenza, l'intero di rispetto a è .
Passaggio 10
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 11
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 11.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 11.1.1
Differenzia .
Passaggio 11.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 11.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 11.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.1.5
Somma e .
Passaggio 11.2
Riscrivi il problema utilizzando e .
Passaggio 12
L'integrale di rispetto a è .
Passaggio 13
Semplifica.
Tocca per altri passaggi...
Passaggio 13.1
Semplifica.
Passaggio 13.2
Semplifica.
Tocca per altri passaggi...
Passaggio 13.2.1
Moltiplica per .
Passaggio 13.2.2
e .
Passaggio 13.2.3
Sposta il negativo davanti alla frazione.
Passaggio 14
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 14.1
Sostituisci tutte le occorrenze di con .
Passaggio 14.2
Sostituisci tutte le occorrenze di con .
Passaggio 15
La risposta è l'antiderivata della funzione .