Calcolo Esempi

Trovare la Primitiva (x+3)/(x^2+3x+2)
Passaggio 1
Scrivi come funzione.
Passaggio 2
È possibile trovare la funzione determinando l'integrale indefinito della derivata .
Passaggio 3
Imposta l'integrale per risolvere.
Passaggio 4
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 4.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 4.1.1
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 4.1.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 4.1.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 4.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 4.1.3
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 4.1.4
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 4.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.5.1
Elimina il fattore comune.
Passaggio 4.1.5.2
Riscrivi l'espressione.
Passaggio 4.1.6
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.6.1
Elimina il fattore comune.
Passaggio 4.1.6.2
Dividi per .
Passaggio 4.1.7
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.7.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.7.1.1
Elimina il fattore comune.
Passaggio 4.1.7.1.2
Dividi per .
Passaggio 4.1.7.2
Applica la proprietà distributiva.
Passaggio 4.1.7.3
Sposta alla sinistra di .
Passaggio 4.1.7.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.7.4.1
Elimina il fattore comune.
Passaggio 4.1.7.4.2
Dividi per .
Passaggio 4.1.7.5
Applica la proprietà distributiva.
Passaggio 4.1.7.6
Moltiplica per .
Passaggio 4.1.8
Sposta .
Passaggio 4.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 4.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 4.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 4.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 4.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 4.3.1
Risolvi per in .
Tocca per altri passaggi...
Passaggio 4.3.1.1
Riscrivi l'equazione come .
Passaggio 4.3.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 4.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 4.3.2.2.1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.3.2.2.1.1.1
Applica la proprietà distributiva.
Passaggio 4.3.2.2.1.1.2
Moltiplica per .
Passaggio 4.3.2.2.1.1.3
Moltiplica per .
Passaggio 4.3.2.2.1.2
Somma e .
Passaggio 4.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 4.3.3.1
Riscrivi l'equazione come .
Passaggio 4.3.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.3.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.3.3.2.2
Sottrai da .
Passaggio 4.3.3.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.3.3.3.1
Dividi per ciascun termine in .
Passaggio 4.3.3.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.3.3.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.3.3.3.2.2
Dividi per .
Passaggio 4.3.3.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.3.3.3.1
Dividi per .
Passaggio 4.3.4
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 4.3.4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 4.3.4.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.4.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 4.3.4.2.1.1
Moltiplica per .
Passaggio 4.3.4.2.1.2
Somma e .
Passaggio 4.3.5
Elenca tutte le soluzioni.
Passaggio 4.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 4.5
Sposta il negativo davanti alla frazione.
Passaggio 5
Dividi il singolo integrale in più integrali.
Passaggio 6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 7
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 7.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 7.1.1
Differenzia .
Passaggio 7.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 7.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 7.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 7.1.5
Somma e .
Passaggio 7.2
Riscrivi il problema utilizzando e .
Passaggio 8
L'integrale di rispetto a è .
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 10.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 10.1.1
Differenzia .
Passaggio 10.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 10.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 10.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 10.1.5
Somma e .
Passaggio 10.2
Riscrivi il problema utilizzando e .
Passaggio 11
L'integrale di rispetto a è .
Passaggio 12
Semplifica.
Passaggio 13
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 13.1
Sostituisci tutte le occorrenze di con .
Passaggio 13.2
Sostituisci tutte le occorrenze di con .
Passaggio 14
La risposta è l'antiderivata della funzione .