Calcolo Esempi

Valutare l''Integrale integrale da 0 a 1 di arctan(2x) rispetto a x
Passaggio 1
Integra per parti usando la formula , dove e .
Passaggio 2
Semplifica.
Tocca per altri passaggi...
Passaggio 2.1
e .
Passaggio 2.2
Sposta alla sinistra di .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Moltiplica per .
Passaggio 5
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 5.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 5.1.1
Differenzia .
Passaggio 5.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 5.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.3.3
Moltiplica per .
Passaggio 5.1.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 5.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.4.2
Somma e .
Passaggio 5.2
Sostituisci il limite inferiore a in .
Passaggio 5.3
Semplifica.
Tocca per altri passaggi...
Passaggio 5.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.3.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 5.3.1.2
Moltiplica per .
Passaggio 5.3.2
Somma e .
Passaggio 5.4
Sostituisci il limite superiore a in .
Passaggio 5.5
Semplifica.
Tocca per altri passaggi...
Passaggio 5.5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.5.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 5.5.1.2
Moltiplica per .
Passaggio 5.5.2
Somma e .
Passaggio 5.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 5.7
Riscrivi il problema usando , e i nuovi limiti dell'integrazione.
Passaggio 6
Semplifica.
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Sposta alla sinistra di .
Passaggio 7
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8
Semplifica.
Tocca per altri passaggi...
Passaggio 8.1
e .
Passaggio 8.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 8.2.1
Scomponi da .
Passaggio 8.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 8.2.2.1
Scomponi da .
Passaggio 8.2.2.2
Elimina il fattore comune.
Passaggio 8.2.2.3
Riscrivi l'espressione.
Passaggio 8.3
Sposta il negativo davanti alla frazione.
Passaggio 9
L'integrale di rispetto a è .
Passaggio 10
Sostituisci e semplifica.
Tocca per altri passaggi...
Passaggio 10.1
Calcola per e per .
Passaggio 10.2
Calcola per e per .
Passaggio 10.3
Semplifica.
Tocca per altri passaggi...
Passaggio 10.3.1
Moltiplica per .
Passaggio 10.3.2
Moltiplica per .
Passaggio 10.3.3
Moltiplica per .
Passaggio 10.3.4
Moltiplica per .
Passaggio 10.3.5
Moltiplica per .
Passaggio 10.3.6
Somma e .
Passaggio 11
Semplifica.
Tocca per altri passaggi...
Passaggio 11.1
Usa la proprietà del quoziente dei logaritmi, .
Passaggio 11.2
e .
Passaggio 12
Semplifica.
Tocca per altri passaggi...
Passaggio 12.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 12.2
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 12.3
Dividi per .
Passaggio 13
Semplifica.
Tocca per altri passaggi...
Passaggio 13.1
Calcola .
Passaggio 13.2
Sottrai da .