Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.3
Differenzia.
Passaggio 1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4
Semplifica l'espressione.
Passaggio 1.3.4.1
Somma e .
Passaggio 1.3.4.2
Moltiplica per .
Passaggio 1.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.6
Sposta alla sinistra di .
Passaggio 1.4
Semplifica.
Passaggio 1.4.1
Applica la proprietà distributiva.
Passaggio 1.4.2
Applica la proprietà distributiva.
Passaggio 1.4.3
Applica la proprietà distributiva.
Passaggio 1.4.4
Raccogli i termini.
Passaggio 1.4.4.1
Eleva alla potenza di .
Passaggio 1.4.4.2
Eleva alla potenza di .
Passaggio 1.4.4.3
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.4.4.4
Somma e .
Passaggio 1.4.4.5
Moltiplica per .
Passaggio 1.4.4.6
Moltiplica per .
Passaggio 1.4.4.7
Moltiplica per .
Passaggio 1.4.4.8
Somma e .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 3
Passaggio 3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.2
Calcola .
Passaggio 3.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.2.3
Moltiplica per .
Passaggio 3.3
Differenzia usando la regola della costante.
Passaggio 3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.2
Somma e .
Passaggio 4
La derivata terza di rispetto a è .