Calcolo Esempi

Trovare la Primitiva 4e^(-2x)+(x-1)^3
Passaggio 1
Scrivi come funzione.
Passaggio 2
È possibile trovare la funzione determinando l'integrale indefinito della derivata .
Passaggio 3
Imposta l'integrale per risolvere.
Passaggio 4
Dividi il singolo integrale in più integrali.
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 6.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 6.1.4
Moltiplica per .
Passaggio 6.2
Riscrivi il problema usando e .
Passaggio 7
Semplifica.
Tocca per altri passaggi...
Passaggio 7.1
Sposta il negativo davanti alla frazione.
Passaggio 7.2
e .
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
Moltiplica per .
Passaggio 10
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 11
Semplifica.
Tocca per altri passaggi...
Passaggio 11.1
e .
Passaggio 11.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 11.2.1
Scomponi da .
Passaggio 11.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 11.2.2.1
Scomponi da .
Passaggio 11.2.2.2
Elimina il fattore comune.
Passaggio 11.2.2.3
Riscrivi l'espressione.
Passaggio 11.2.2.4
Dividi per .
Passaggio 12
L'integrale di rispetto a è .
Passaggio 13
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 13.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 13.1.1
Differenzia .
Passaggio 13.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 13.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 13.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 13.1.5
Somma e .
Passaggio 13.2
Riscrivi il problema usando e .
Passaggio 14
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 15
Semplifica.
Passaggio 16
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 16.1
Sostituisci tutte le occorrenze di con .
Passaggio 16.2
Sostituisci tutte le occorrenze di con .
Passaggio 17
La risposta è l'antiderivata della funzione .