Calcolo Esempi

Risolvere l''Equazione Differenziale (dy)/(dx)=-(4x)/(9y)
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Moltiplica ogni lato per .
Passaggio 1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 1.2.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Scomponi da .
Passaggio 1.2.2.2
Scomponi da .
Passaggio 1.2.2.3
Elimina il fattore comune.
Passaggio 1.2.2.4
Riscrivi l'espressione.
Passaggio 1.3
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.3
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.4
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 2.3.4.1
Riscrivi come .
Passaggio 2.3.4.2
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.4.2.1
Moltiplica per .
Passaggio 2.3.4.2.2
Moltiplica per .
Passaggio 2.3.4.2.3
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 2.3.4.2.3.1
Scomponi da .
Passaggio 2.3.4.2.3.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 2.3.4.2.3.2.1
Scomponi da .
Passaggio 2.3.4.2.3.2.2
Elimina il fattore comune.
Passaggio 2.3.4.2.3.2.3
Riscrivi l'espressione.
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.2.1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.2.1.1.1
e .
Passaggio 3.2.2.1.1.2
Sposta alla sinistra di .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
Moltiplica .
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.1
Moltiplica per .
Passaggio 3.2.2.1.3.2
e .
Passaggio 3.2.2.1.3.3
Moltiplica per .
Passaggio 3.2.2.1.4
Sposta il negativo davanti alla frazione.
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
Semplifica .
Tocca per altri passaggi...
Passaggio 3.4.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 3.4.1.1
Scomponi da .
Passaggio 3.4.1.2
Scomponi da .
Passaggio 3.4.1.3
Scomponi da .
Passaggio 3.4.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.4.3
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 3.4.3.1
e .
Passaggio 3.4.3.2
Riduci i numeratori su un comune denominatore.
Passaggio 3.4.4
Sposta alla sinistra di .
Passaggio 3.4.5
e .
Passaggio 3.4.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 3.4.6.1
Scomponi la potenza perfetta su .
Passaggio 3.4.6.2
Scomponi la potenza perfetta su .
Passaggio 3.4.6.3
Riordina la frazione .
Passaggio 3.4.7
Estrai i termini dal radicale.
Passaggio 3.4.8
e .
Passaggio 3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.