Calcolo Esempi

Risolvere l''Equazione Differenziale (10+x^4)(dy)/(dx)=(x^3)/y
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.1.1
Dividi per ciascun termine in .
Passaggio 1.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.2.1.1
Elimina il fattore comune.
Passaggio 1.1.2.1.2
Dividi per .
Passaggio 1.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.1.3.2
Moltiplica per .
Passaggio 1.2
Raggruppa i fattori.
Passaggio 1.3
Moltiplica ogni lato per .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Moltiplica per .
Passaggio 1.4.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.4.2.1
Scomponi da .
Passaggio 1.4.2.2
Elimina il fattore comune.
Passaggio 1.4.2.3
Riscrivi l'espressione.
Passaggio 1.5
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Riscrivi come .
Passaggio 2.3.2
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 2.3.2.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 2.3.2.1.1
Differenzia .
Passaggio 2.3.2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.2.2
Riscrivi il problema usando e .
Passaggio 2.3.3
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Semplifica.
Passaggio 2.3.3.2
Moltiplica per .
Passaggio 2.3.3.3
Sposta alla sinistra di .
Passaggio 2.3.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.5
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 2.3.5.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 2.3.5.1.1
Differenzia .
Passaggio 2.3.5.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.5.1.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.5.1.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.5.1.5
Somma e .
Passaggio 2.3.5.2
Riscrivi il problema usando e .
Passaggio 2.3.6
L'integrale di rispetto a è .
Passaggio 2.3.7
Semplifica.
Passaggio 2.3.8
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 2.3.8.1
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.8.2
Sostituisci tutte le occorrenze di con .
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.2.1.1
e .
Passaggio 3.2.2.1.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.2.2.1.3
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.1
e .
Passaggio 3.2.2.1.3.2
Riduci i numeratori su un comune denominatore.
Passaggio 3.2.2.1.3.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.3.1
Scomponi da .
Passaggio 3.2.2.1.3.3.2
Elimina il fattore comune.
Passaggio 3.2.2.1.3.3.3
Riscrivi l'espressione.
Passaggio 3.2.2.1.4
Sposta alla sinistra di .
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
Semplifica .
Tocca per altri passaggi...
Passaggio 3.4.1
Riscrivi come .
Passaggio 3.4.2
Moltiplica per .
Passaggio 3.4.3
Combina e semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 3.4.3.1
Moltiplica per .
Passaggio 3.4.3.2
Eleva alla potenza di .
Passaggio 3.4.3.3
Eleva alla potenza di .
Passaggio 3.4.3.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.4.3.5
Somma e .
Passaggio 3.4.3.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 3.4.3.6.1
Usa per riscrivere come .
Passaggio 3.4.3.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.4.3.6.3
e .
Passaggio 3.4.3.6.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.4.3.6.4.1
Elimina il fattore comune.
Passaggio 3.4.3.6.4.2
Riscrivi l'espressione.
Passaggio 3.4.3.6.5
Calcola l'esponente.
Passaggio 3.4.4
Combina usando la regola del prodotto per i radicali.
Passaggio 3.4.5
Riordina i fattori in .
Passaggio 3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.