Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Moltiplica ogni lato per .
Passaggio 1.2
Semplifica.
Passaggio 1.2.1
Elimina il fattore comune di .
Passaggio 1.2.1.1
Scomponi da .
Passaggio 1.2.1.2
Elimina il fattore comune.
Passaggio 1.2.1.3
Riscrivi l'espressione.
Passaggio 1.2.2
Moltiplica per sommando gli esponenti.
Passaggio 1.2.2.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.2.2.2
Combina i termini opposti in .
Passaggio 1.2.2.2.1
Somma e .
Passaggio 1.2.2.2.2
Somma e .
Passaggio 1.3
Riscrivi l'equazione.
Passaggio 2
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Integra il lato sinistro.
Passaggio 2.2.1
Semplifica l'espressione.
Passaggio 2.2.1.1
Nega l'esponente di e rimuovilo dal denominatore.
Passaggio 2.2.1.2
Semplifica.
Passaggio 2.2.1.2.1
Moltiplica gli esponenti in .
Passaggio 2.2.1.2.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.2.1.2
Moltiplica per .
Passaggio 2.2.1.2.2
Moltiplica per .
Passaggio 2.2.2
Sia . Allora , quindi . Riscrivi usando e .
Passaggio 2.2.2.1
Sia . Trova .
Passaggio 2.2.2.1.1
Differenzia .
Passaggio 2.2.2.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.1.4
Moltiplica per .
Passaggio 2.2.2.2
Riscrivi il problema usando e .
Passaggio 2.2.3
Semplifica.
Passaggio 2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 2.2.3.2
e .
Passaggio 2.2.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.2.5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.2.6
L'integrale di rispetto a è .
Passaggio 2.2.7
Semplifica.
Passaggio 2.2.8
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Integra il lato destro.
Passaggio 2.3.1
Sia . Allora , quindi . Riscrivi usando e .
Passaggio 2.3.1.1
Sia . Trova .
Passaggio 2.3.1.1.1
Differenzia .
Passaggio 2.3.1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.1.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.1.1.4
Moltiplica per .
Passaggio 2.3.1.2
Riscrivi il problema usando e .
Passaggio 2.3.2
e .
Passaggio 2.3.3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.4
L'integrale di rispetto a è .
Passaggio 2.3.5
Semplifica.
Passaggio 2.3.6
Sostituisci tutte le occorrenze di con .
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Passaggio 3.2.1
Semplifica il lato sinistro.
Passaggio 3.2.1.1
Semplifica .
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Passaggio 3.2.1.1.2.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.2.1.1.2.2
Scomponi da .
Passaggio 3.2.1.1.2.3
Elimina il fattore comune.
Passaggio 3.2.1.1.2.4
Riscrivi l'espressione.
Passaggio 3.2.1.1.3
Moltiplica.
Passaggio 3.2.1.1.3.1
Moltiplica per .
Passaggio 3.2.1.1.3.2
Moltiplica per .
Passaggio 3.2.2
Semplifica il lato destro.
Passaggio 3.2.2.1
Semplifica .
Passaggio 3.2.2.1.1
e .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
e .
Passaggio 3.2.2.1.4
Sposta il negativo davanti alla frazione.
Passaggio 3.3
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 3.4
Espandi il lato sinistro.
Passaggio 3.4.1
Espandi spostando fuori dal logaritmo.
Passaggio 3.4.2
Il logaritmo naturale di è .
Passaggio 3.4.3
Moltiplica per .
Passaggio 3.5
Dividi per ciascun termine in e semplifica.
Passaggio 3.5.1
Dividi per ciascun termine in .
Passaggio 3.5.2
Semplifica il lato sinistro.
Passaggio 3.5.2.1
Elimina il fattore comune di .
Passaggio 3.5.2.1.1
Elimina il fattore comune.
Passaggio 3.5.2.1.2
Dividi per .
Passaggio 3.5.3
Semplifica il lato destro.
Passaggio 3.5.3.1
Sposta il negativo davanti alla frazione.
Passaggio 4
Semplifica la costante dell'integrazione.