Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia rispetto a .
Passaggio 1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4
Moltiplica per .
Passaggio 2
Passaggio 2.1
Differenzia rispetto a .
Passaggio 2.2
Differenzia.
Passaggio 2.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Sottrai da .
Passaggio 3
Passaggio 3.1
Sostituisci a e a
Passaggio 3.2
Poiché il lato sinistro non è uguale al lato destro, l'equazione non è un'identità.
non è un'identità.
non è un'identità.
Passaggio 4
Passaggio 4.1
Sostituisci a .
Passaggio 4.2
Sostituisci a .
Passaggio 4.3
Sostituisci a .
Passaggio 4.3.1
Sostituisci a .
Passaggio 4.3.2
Semplifica il numeratore.
Passaggio 4.3.2.1
Scomponi da .
Passaggio 4.3.2.1.1
Scomponi da .
Passaggio 4.3.2.1.2
Scomponi da .
Passaggio 4.3.2.1.3
Scomponi da .
Passaggio 4.3.2.2
Moltiplica per .
Passaggio 4.3.2.3
Sottrai da .
Passaggio 4.3.3
Elimina il fattore comune di .
Passaggio 4.3.3.1
Elimina il fattore comune.
Passaggio 4.3.3.2
Riscrivi l'espressione.
Passaggio 4.3.4
Elimina il fattore comune di e .
Passaggio 4.3.4.1
Scomponi da .
Passaggio 4.3.4.2
Elimina i fattori comuni.
Passaggio 4.3.4.2.1
Scomponi da .
Passaggio 4.3.4.2.2
Elimina il fattore comune.
Passaggio 4.3.4.2.3
Riscrivi l'espressione.
Passaggio 4.3.5
Sostituisci a .
Passaggio 4.4
Trova il fattore di integrazione .
Passaggio 5
Passaggio 5.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.3
Moltiplica per .
Passaggio 5.4
L'integrale di rispetto a è .
Passaggio 5.5
Semplifica.
Passaggio 5.6
Semplifica ciascun termine.
Passaggio 5.6.1
Semplifica spostando all'interno del logaritmo.
Passaggio 5.6.2
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 5.6.3
Rimuovi il valore assoluto in perché gli elevamenti a potenza con potenze pari sono sempre positivi.
Passaggio 5.6.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 6
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Elimina il fattore comune di .
Passaggio 6.2.1
Scomponi da .
Passaggio 6.2.2
Scomponi da .
Passaggio 6.2.3
Elimina il fattore comune.
Passaggio 6.2.4
Riscrivi l'espressione.
Passaggio 6.3
e .
Passaggio 6.4
e .
Passaggio 6.5
Sposta alla sinistra di .
Passaggio 6.6
Moltiplica per .
Passaggio 6.7
Moltiplica per .
Passaggio 6.8
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza usando la formula della differenza di quadrati, dove e .
Passaggio 7
Imposta uguale all'integrale di .
Passaggio 8
Passaggio 8.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 8.3
Semplifica la risposta.
Passaggio 8.3.1
Riscrivi come .
Passaggio 8.3.2
Semplifica.
Passaggio 8.3.2.1
Moltiplica per .
Passaggio 8.3.2.2
Sposta alla sinistra di .
Passaggio 8.3.2.3
Moltiplica per .
Passaggio 8.3.2.4
Elimina il fattore comune di .
Passaggio 8.3.2.4.1
Elimina il fattore comune.
Passaggio 8.3.2.4.2
Riscrivi l'espressione.
Passaggio 8.3.2.5
e .
Passaggio 9
Poiché l'integrale di conterrà una costante di integrazione, è possibile sostituire con .
Passaggio 10
Imposta .
Passaggio 11
Passaggio 11.1
Differenzia rispetto a .
Passaggio 11.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 11.3
Calcola .
Passaggio 11.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.3.2
Riscrivi come .
Passaggio 11.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 11.4
Differenzia usando la regola della funzione secondo cui la derivata di è .
Passaggio 11.5
Semplifica.
Passaggio 11.5.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 11.5.2
e .
Passaggio 11.5.3
Riordina i termini.
Passaggio 12
Passaggio 12.1
Risolvi per .
Passaggio 12.1.1
Sposta tutti i termini contenenti variabili sul lato sinistro dell'equazione.
Passaggio 12.1.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 12.1.1.2
Riduci i numeratori su un comune denominatore.
Passaggio 12.1.1.3
Semplifica ciascun termine.
Passaggio 12.1.1.3.1
Applica la proprietà distributiva.
Passaggio 12.1.1.3.2
Espandi usando il metodo FOIL.
Passaggio 12.1.1.3.2.1
Applica la proprietà distributiva.
Passaggio 12.1.1.3.2.2
Applica la proprietà distributiva.
Passaggio 12.1.1.3.2.3
Applica la proprietà distributiva.
Passaggio 12.1.1.3.3
Semplifica e combina i termini simili.
Passaggio 12.1.1.3.3.1
Semplifica ciascun termine.
Passaggio 12.1.1.3.3.1.1
Moltiplica per sommando gli esponenti.
Passaggio 12.1.1.3.3.1.1.1
Sposta .
Passaggio 12.1.1.3.3.1.1.2
Moltiplica per .
Passaggio 12.1.1.3.3.1.2
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 12.1.1.3.3.1.3
Moltiplica per .
Passaggio 12.1.1.3.3.1.4
Moltiplica per .
Passaggio 12.1.1.3.3.1.5
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 12.1.1.3.3.1.6
Moltiplica per sommando gli esponenti.
Passaggio 12.1.1.3.3.1.6.1
Sposta .
Passaggio 12.1.1.3.3.1.6.2
Moltiplica per .
Passaggio 12.1.1.3.3.1.7
Moltiplica per .
Passaggio 12.1.1.3.3.1.8
Moltiplica per .
Passaggio 12.1.1.3.3.2
Sottrai da .
Passaggio 12.1.1.3.3.2.1
Riordina e .
Passaggio 12.1.1.3.3.2.2
Sottrai da .
Passaggio 12.1.1.3.3.3
Somma e .
Passaggio 12.1.1.4
Combina i termini opposti in .
Passaggio 12.1.1.4.1
Somma e .
Passaggio 12.1.1.4.2
Somma e .
Passaggio 12.1.1.5
Elimina il fattore comune di .
Passaggio 12.1.1.5.1
Elimina il fattore comune.
Passaggio 12.1.1.5.2
Dividi per .
Passaggio 12.1.2
Somma a entrambi i lati dell'equazione.
Passaggio 13
Passaggio 13.1
Integra entrambi i lati di .
Passaggio 13.2
Calcola .
Passaggio 13.3
Applica la regola costante.
Passaggio 14
Sostituisci a in .