Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Risolvi per .
Passaggio 1.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.1.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 1.1.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.1.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.1.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.1.3.1
Dividi per ciascun termine in .
Passaggio 1.1.3.2
Semplifica il lato sinistro.
Passaggio 1.1.3.2.1
Elimina il fattore comune di .
Passaggio 1.1.3.2.1.1
Elimina il fattore comune.
Passaggio 1.1.3.2.1.2
Dividi per .
Passaggio 1.1.3.3
Semplifica il lato destro.
Passaggio 1.1.3.3.1
Semplifica ciascun termine.
Passaggio 1.1.3.3.1.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.1.3.3.1.2
Moltiplica per .
Passaggio 1.1.3.3.1.3
Sposta alla sinistra di .
Passaggio 1.1.3.3.1.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.1.3.3.1.5
Elimina il fattore comune di .
Passaggio 1.1.3.3.1.5.1
Scomponi da .
Passaggio 1.1.3.3.1.5.2
Elimina il fattore comune.
Passaggio 1.1.3.3.1.5.3
Riscrivi l'espressione.
Passaggio 1.2
Scomponi.
Passaggio 1.2.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.2
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 1.2.2.1
Moltiplica per .
Passaggio 1.2.2.2
Riordina i fattori di .
Passaggio 1.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.4
Sposta alla sinistra di .
Passaggio 1.3
Moltiplica ogni lato per .
Passaggio 1.4
Elimina il fattore comune di .
Passaggio 1.4.1
Scomponi da .
Passaggio 1.4.2
Elimina il fattore comune.
Passaggio 1.4.3
Riscrivi l'espressione.
Passaggio 1.5
Riscrivi l'equazione.
Passaggio 2
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Passaggio 2.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.2
Dividi il singolo integrale in più integrali.
Passaggio 2.3.3
Applica la regola costante.
Passaggio 2.3.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.5
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.6
Semplifica.
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Passaggio 3.2.1
Semplifica il lato sinistro.
Passaggio 3.2.1.1
Semplifica .
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Passaggio 3.2.2.1
Semplifica .
Passaggio 3.2.2.1.1
Semplifica ciascun termine.
Passaggio 3.2.2.1.1.1
Applica la proprietà distributiva.
Passaggio 3.2.2.1.1.2
e .
Passaggio 3.2.2.1.1.3
e .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
Semplifica.
Passaggio 3.2.2.1.3.1
Elimina il fattore comune di .
Passaggio 3.2.2.1.3.1.1
Elimina il fattore comune.
Passaggio 3.2.2.1.3.1.2
Riscrivi l'espressione.
Passaggio 3.2.2.1.3.2
Elimina il fattore comune di .
Passaggio 3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.