Calcolo Esempi

Risolvere l''Equazione Differenziale 2(dy)/(dx)-1/y=(2x)/y
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.1.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.1.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.1.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Dividi per ciascun termine in .
Passaggio 1.1.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.3.2.1.1
Elimina il fattore comune.
Passaggio 1.1.3.2.1.2
Dividi per .
Passaggio 1.1.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.1.3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.3.3.1.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.1.3.3.1.2
Moltiplica per .
Passaggio 1.1.3.3.1.3
Sposta alla sinistra di .
Passaggio 1.1.3.3.1.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.1.3.3.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.3.3.1.5.1
Scomponi da .
Passaggio 1.1.3.3.1.5.2
Elimina il fattore comune.
Passaggio 1.1.3.3.1.5.3
Riscrivi l'espressione.
Passaggio 1.2
Scomponi.
Tocca per altri passaggi...
Passaggio 1.2.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.2
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Moltiplica per .
Passaggio 1.2.2.2
Riordina i fattori di .
Passaggio 1.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.4
Sposta alla sinistra di .
Passaggio 1.3
Moltiplica ogni lato per .
Passaggio 1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.4.1
Scomponi da .
Passaggio 1.4.2
Elimina il fattore comune.
Passaggio 1.4.3
Riscrivi l'espressione.
Passaggio 1.5
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.2
Dividi il singolo integrale in più integrali.
Passaggio 2.3.3
Applica la regola costante.
Passaggio 2.3.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.5
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.6
Semplifica.
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.2.1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.2.1.1.1
Applica la proprietà distributiva.
Passaggio 3.2.2.1.1.2
e .
Passaggio 3.2.2.1.1.3
e .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.1.1
Elimina il fattore comune.
Passaggio 3.2.2.1.3.1.2
Riscrivi l'espressione.
Passaggio 3.2.2.1.3.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 3.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.