Calcolo Esempi

Risolvere l''Equazione Differenziale (dy)/(dx)=e^(-y)(2x-4) , y(5)=0
,
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Moltiplica ogni lato per .
Passaggio 1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.1
Elimina il fattore comune.
Passaggio 1.2.2
Riscrivi l'espressione.
Passaggio 1.3
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Integra il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.2.1.1
Nega l'esponente di e rimuovilo dal denominatore.
Passaggio 2.2.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 2.2.1.2.1
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.1.2.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.2.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.2.1.2.1.2.1
Moltiplica per .
Passaggio 2.2.1.2.1.2.2
Moltiplica per .
Passaggio 2.2.1.2.2
Moltiplica per .
Passaggio 2.2.2
L'integrale di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Dividi il singolo integrale in più integrali.
Passaggio 2.3.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.3
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.4
Applica la regola costante.
Passaggio 2.3.5
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.5.1
e .
Passaggio 2.3.5.2
Semplifica.
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 3.2
Espandi il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Espandi spostando fuori dal logaritmo.
Passaggio 3.2.2
Il logaritmo naturale di è .
Passaggio 3.2.3
Moltiplica per .
Passaggio 4
Usa la condizione iniziale per trovare il valore di sostituendo con e con in .
Passaggio 5
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.1
Riscrivi l'equazione come .
Passaggio 5.2
Per risolvere per , riscrivi l'equazione usando le proprietà dei logaritmi.
Passaggio 5.3
Riscrivi in forma esponenziale usando la definizione di logaritmo. Se e sono numeri reali positivi e , allora è equivalente a .
Passaggio 5.4
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.1
Riscrivi l'equazione come .
Passaggio 5.4.2
Semplifica .
Tocca per altri passaggi...
Passaggio 5.4.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.4.2.1.1
Eleva alla potenza di .
Passaggio 5.4.2.1.2
Moltiplica per .
Passaggio 5.4.2.2
Sottrai da .
Passaggio 5.4.3
Qualsiasi valore elevato a è .
Passaggio 5.4.4
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 5.4.4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.4.4.2
Sottrai da .
Passaggio 6
Sostituisci a in e semplifica.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci a .