Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Moltiplica ogni lato per .
Passaggio 1.2
Semplifica.
Passaggio 1.2.1
Elimina il fattore comune di .
Passaggio 1.2.1.1
Scomponi da .
Passaggio 1.2.1.2
Elimina il fattore comune.
Passaggio 1.2.1.3
Riscrivi l'espressione.
Passaggio 1.2.2
Elimina il fattore comune di e .
Passaggio 1.2.2.1
Scomponi da .
Passaggio 1.2.2.2
Elimina i fattori comuni.
Passaggio 1.2.2.2.1
Scomponi da .
Passaggio 1.2.2.2.2
Elimina il fattore comune.
Passaggio 1.2.2.2.3
Riscrivi l'espressione.
Passaggio 1.3
Riscrivi l'equazione.
Passaggio 2
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Passaggio 2.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.3
Semplifica la risposta.
Passaggio 2.3.3.1
Riscrivi come .
Passaggio 2.3.3.2
Semplifica.
Passaggio 2.3.3.2.1
Moltiplica per .
Passaggio 2.3.3.2.2
Moltiplica per .
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Passaggio 3.2.1
Semplifica il lato sinistro.
Passaggio 3.2.1.1
Semplifica .
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Passaggio 3.2.2.1
Semplifica .
Passaggio 3.2.2.1.1
e .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
Elimina il fattore comune di .
Passaggio 3.2.2.1.3.1
Scomponi da .
Passaggio 3.2.2.1.3.2
Elimina il fattore comune.
Passaggio 3.2.2.1.3.3
Riscrivi l'espressione.
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
Semplifica .
Passaggio 3.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.4.2
e .
Passaggio 3.4.3
Riduci i numeratori su un comune denominatore.
Passaggio 3.4.4
Moltiplica per .
Passaggio 3.4.5
Riscrivi come .
Passaggio 3.4.5.1
Scomponi la potenza perfetta su .
Passaggio 3.4.5.2
Scomponi la potenza perfetta su .
Passaggio 3.4.5.3
Riordina la frazione .
Passaggio 3.4.6
Estrai i termini dal radicale.
Passaggio 3.4.7
e .
Passaggio 3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.