Calcolo Esempi

Risolvere l''Equazione Differenziale y(dy)/(dx)=xe^(-y^2)
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Moltiplica ogni lato per .
Passaggio 1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.1
Scomponi da .
Passaggio 1.2.2
Elimina il fattore comune.
Passaggio 1.2.3
Riscrivi l'espressione.
Passaggio 1.3
Rimuovi le parentesi non necessarie.
Passaggio 1.4
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Integra il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.1
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 2.2.1.1
e .
Passaggio 2.2.1.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.2.1.2.1
Nega l'esponente di e rimuovilo dal denominatore.
Passaggio 2.2.1.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.1.2.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.2.2.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.2.1.2.2.2.1
Moltiplica per .
Passaggio 2.2.1.2.2.2.2
Moltiplica per .
Passaggio 2.2.2
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 2.2.2.1.1
Differenzia .
Passaggio 2.2.2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.2
Riscrivi il problema usando e .
Passaggio 2.2.3
e .
Passaggio 2.2.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.2.5
L'integrale di rispetto a è .
Passaggio 2.2.6
Semplifica.
Passaggio 2.2.7
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.2.1.1
e .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.2.1.3.1
Elimina il fattore comune.
Passaggio 3.2.2.1.3.2
Riscrivi l'espressione.
Passaggio 3.3
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 3.4
Espandi il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.4.1
Espandi spostando fuori dal logaritmo.
Passaggio 3.4.2
Il logaritmo naturale di è .
Passaggio 3.4.3
Moltiplica per .
Passaggio 3.5
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 3.6.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.6.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.