Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia rispetto a .
Passaggio 1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Calcola .
Passaggio 1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4.3
Moltiplica per .
Passaggio 1.5
Riordina i termini.
Passaggio 2
Passaggio 2.1
Differenzia rispetto a .
Passaggio 2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Calcola .
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.4.3
Moltiplica per .
Passaggio 2.5
Riordina i termini.
Passaggio 3
Passaggio 3.1
Sostituisci a e a
Passaggio 3.2
Dato che è stato dimostrato che i due lati sono equivalenti, l'equazione è un'identità.
è un'identità.
è un'identità.
Passaggio 4
Imposta uguale all'integrale di .
Passaggio 5
Passaggio 5.1
Dividi il singolo integrale in più integrali.
Passaggio 5.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.3
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 5.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.5
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 5.6
Semplifica.
Passaggio 5.7
Semplifica.
Passaggio 5.7.1
e .
Passaggio 5.7.2
Elimina il fattore comune di e .
Passaggio 5.7.2.1
Scomponi da .
Passaggio 5.7.2.2
Elimina i fattori comuni.
Passaggio 5.7.2.2.1
Scomponi da .
Passaggio 5.7.2.2.2
Elimina il fattore comune.
Passaggio 5.7.2.2.3
Riscrivi l'espressione.
Passaggio 5.7.2.2.4
Dividi per .
Passaggio 5.7.3
e .
Passaggio 5.7.4
e .
Passaggio 5.7.5
e .
Passaggio 5.7.6
Elimina il fattore comune di e .
Passaggio 5.7.6.1
Scomponi da .
Passaggio 5.7.6.2
Elimina i fattori comuni.
Passaggio 5.7.6.2.1
Scomponi da .
Passaggio 5.7.6.2.2
Elimina il fattore comune.
Passaggio 5.7.6.2.3
Riscrivi l'espressione.
Passaggio 5.7.6.2.4
Dividi per .
Passaggio 6
Poiché l'integrale di conterrà una costante di integrazione, è possibile sostituire con .
Passaggio 7
Imposta .
Passaggio 8
Passaggio 8.1
Differenzia rispetto a .
Passaggio 8.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 8.3
Calcola .
Passaggio 8.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 8.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 8.3.3
Moltiplica per .
Passaggio 8.4
Calcola .
Passaggio 8.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 8.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 8.4.3
Moltiplica per .
Passaggio 8.5
Differenzia usando la regola della funzione secondo cui la derivata di è .
Passaggio 8.6
Riordina i termini.
Passaggio 9
Passaggio 9.1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 9.1.1
Somma a entrambi i lati dell'equazione.
Passaggio 9.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 9.1.3
Combina i termini opposti in .
Passaggio 9.1.3.1
Somma e .
Passaggio 9.1.3.2
Somma e .
Passaggio 9.1.3.3
Sottrai da .
Passaggio 10
Passaggio 10.1
Integra entrambi i lati di .
Passaggio 10.2
Calcola .
Passaggio 10.3
L'integrale di rispetto a è .
Passaggio 10.4
Somma e .
Passaggio 11
Sostituisci a in .
Passaggio 12
Riscrivi usando la proprietà commutativa della moltiplicazione.