Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2
Riscrivi.
Passaggio 2
Passaggio 2.1
Differenzia rispetto a .
Passaggio 2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.5
Somma e .
Passaggio 2.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.7
Moltiplica per .
Passaggio 3
Passaggio 3.1
Differenzia rispetto a .
Passaggio 3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4
Moltiplica per .
Passaggio 4
Passaggio 4.1
Sostituisci a e a
Passaggio 4.2
Poiché il lato sinistro non è uguale al lato destro, l'equazione non è un'identità.
non è un'identità.
non è un'identità.
Passaggio 5
Passaggio 5.1
Sostituisci a .
Passaggio 5.2
Sostituisci a .
Passaggio 5.3
Sostituisci a .
Passaggio 5.3.1
Sostituisci a .
Passaggio 5.3.2
Sottrai da .
Passaggio 5.3.3
Sposta il negativo davanti alla frazione.
Passaggio 5.4
Trova il fattore di integrazione .
Passaggio 6
Passaggio 6.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6.3
L'integrale di rispetto a è .
Passaggio 6.4
Semplifica.
Passaggio 6.5
Semplifica ciascun termine.
Passaggio 6.5.1
Moltiplica .
Passaggio 6.5.1.1
Riordina e .
Passaggio 6.5.1.2
Semplifica spostando all'interno del logaritmo.
Passaggio 6.5.2
Semplifica spostando all'interno del logaritmo.
Passaggio 6.5.3
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 6.5.4
Moltiplica gli esponenti in .
Passaggio 6.5.4.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 6.5.4.2
Moltiplica .
Passaggio 6.5.4.2.1
e .
Passaggio 6.5.4.2.2
Moltiplica per .
Passaggio 6.5.4.3
Sposta il negativo davanti alla frazione.
Passaggio 6.5.5
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 7
Passaggio 7.1
Moltiplica per .
Passaggio 7.2
Applica la proprietà distributiva.
Passaggio 7.3
Moltiplica per .
Passaggio 7.4
Scomponi da .
Passaggio 7.5
Scomponi da .
Passaggio 7.6
Scomponi da .
Passaggio 7.7
Riscrivi come .
Passaggio 7.8
Sposta il negativo davanti alla frazione.
Passaggio 7.9
Moltiplica per .
Passaggio 7.10
Moltiplica .
Passaggio 7.10.1
e .
Passaggio 7.10.2
e .
Passaggio 7.11
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 7.12
Moltiplica per sommando gli esponenti.
Passaggio 7.12.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 7.12.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 7.12.3
e .
Passaggio 7.12.4
Riduci i numeratori su un comune denominatore.
Passaggio 7.12.5
Semplifica il numeratore.
Passaggio 7.12.5.1
Moltiplica per .
Passaggio 7.12.5.2
Sottrai da .
Passaggio 8
Imposta uguale all'integrale di .
Passaggio 9
Passaggio 9.1
Applica la regola costante.
Passaggio 9.2
e .
Passaggio 10
Poiché l'integrale di conterrà una costante di integrazione, è possibile sostituire con .
Passaggio 11
Imposta .
Passaggio 12
Passaggio 12.1
Differenzia rispetto a .
Passaggio 12.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 12.3
Calcola .
Passaggio 12.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 12.3.2
Riscrivi come .
Passaggio 12.3.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 12.3.3.1
Per applicare la regola della catena, imposta come .
Passaggio 12.3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 12.3.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 12.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 12.3.5
Moltiplica gli esponenti in .
Passaggio 12.3.5.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 12.3.5.2
Elimina il fattore comune di .
Passaggio 12.3.5.2.1
Scomponi da .
Passaggio 12.3.5.2.2
Elimina il fattore comune.
Passaggio 12.3.5.2.3
Riscrivi l'espressione.
Passaggio 12.3.6
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 12.3.7
e .
Passaggio 12.3.8
Riduci i numeratori su un comune denominatore.
Passaggio 12.3.9
Semplifica il numeratore.
Passaggio 12.3.9.1
Moltiplica per .
Passaggio 12.3.9.2
Sottrai da .
Passaggio 12.3.10
Sposta il negativo davanti alla frazione.
Passaggio 12.3.11
e .
Passaggio 12.3.12
e .
Passaggio 12.3.13
Moltiplica per sommando gli esponenti.
Passaggio 12.3.13.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 12.3.13.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 12.3.13.3
e .
Passaggio 12.3.13.4
Riduci i numeratori su un comune denominatore.
Passaggio 12.3.13.5
Semplifica il numeratore.
Passaggio 12.3.13.5.1
Moltiplica per .
Passaggio 12.3.13.5.2
Sottrai da .
Passaggio 12.3.13.6
Sposta il negativo davanti alla frazione.
Passaggio 12.3.14
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 12.3.15
Moltiplica per .
Passaggio 12.3.16
e .
Passaggio 12.3.17
e .
Passaggio 12.3.18
Sposta alla sinistra di .
Passaggio 12.3.19
Scomponi da .
Passaggio 12.3.20
Elimina i fattori comuni.
Passaggio 12.3.20.1
Scomponi da .
Passaggio 12.3.20.2
Elimina il fattore comune.
Passaggio 12.3.20.3
Riscrivi l'espressione.
Passaggio 12.3.21
Sposta il negativo davanti alla frazione.
Passaggio 12.4
Differenzia usando la regola della funzione secondo cui la derivata di è .
Passaggio 12.5
Riordina i termini.
Passaggio 13
Passaggio 13.1
Risolvi per .
Passaggio 13.1.1
Semplifica .
Passaggio 13.1.1.1
Semplifica i termini.
Passaggio 13.1.1.1.1
Riduci i numeratori su un comune denominatore.
Passaggio 13.1.1.1.2
Combina i termini opposti in .
Passaggio 13.1.1.1.2.1
Somma e .
Passaggio 13.1.1.1.2.2
Somma e .
Passaggio 13.1.1.2
Semplifica ciascun termine.
Passaggio 13.1.1.2.1
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 13.1.1.2.2
Moltiplica per sommando gli esponenti.
Passaggio 13.1.1.2.2.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 13.1.1.2.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 13.1.1.2.2.3
e .
Passaggio 13.1.1.2.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 13.1.1.2.2.5
Semplifica il numeratore.
Passaggio 13.1.1.2.2.5.1
Moltiplica per .
Passaggio 13.1.1.2.2.5.2
Sottrai da .
Passaggio 13.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 14
Passaggio 14.1
Integra entrambi i lati di .
Passaggio 14.2
Calcola .
Passaggio 14.3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 14.4
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 14.5
Moltiplica gli esponenti in .
Passaggio 14.5.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 14.5.2
e .
Passaggio 14.5.3
Sposta il negativo davanti alla frazione.
Passaggio 14.6
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 14.7
Semplifica la risposta.
Passaggio 14.7.1
Riscrivi come .
Passaggio 14.7.2
Moltiplica per .
Passaggio 15
Sostituisci a in .