Calcolo Esempi

Risolvere l''Equazione Differenziale (y^3+y+1)dx+(x^2-3xy^2-x)dy=0
Passaggio 1
Trova dove .
Tocca per altri passaggi...
Passaggio 1.1
Differenzia rispetto a .
Passaggio 1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.6
Somma e .
Passaggio 2
Trova dove .
Tocca per altri passaggi...
Passaggio 2.1
Differenzia rispetto a .
Passaggio 2.2
Differenzia.
Tocca per altri passaggi...
Passaggio 2.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Calcola .
Tocca per altri passaggi...
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.4.3
Moltiplica per .
Passaggio 2.5
Riordina i termini.
Passaggio 3
Verifica che .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci a e a
Passaggio 3.2
Poiché il lato sinistro non è uguale al lato destro, l'equazione non è un'identità.
non è un'identità.
non è un'identità.
Passaggio 4
Trova il fattore di integrazione .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci a .
Passaggio 4.2
Sostituisci a .
Passaggio 4.3
Sostituisci a .
Tocca per altri passaggi...
Passaggio 4.3.1
Sostituisci a .
Passaggio 4.3.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Applica la proprietà distributiva.
Passaggio 4.3.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.3.2.2.1
Moltiplica per .
Passaggio 4.3.2.2.2
Moltiplica per .
Passaggio 4.3.2.2.3
Moltiplica per .
Passaggio 4.3.2.3
Somma e .
Passaggio 4.3.2.4
Somma e .
Passaggio 4.3.2.5
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.3.2.5.1
Scomponi da .
Passaggio 4.3.2.5.2
Scomponi da .
Passaggio 4.3.2.5.3
Scomponi da .
Passaggio 4.3.2.5.4
Scomponi da .
Passaggio 4.3.2.5.5
Scomponi da .
Passaggio 4.3.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.3.3.1
Scomponi da .
Passaggio 4.3.3.2
Scomponi da .
Passaggio 4.3.3.3
Scomponi da .
Passaggio 4.3.3.4
Scomponi da .
Passaggio 4.3.3.5
Scomponi da .
Passaggio 4.3.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.3.4.1
Scomponi da .
Passaggio 4.3.4.2
Scomponi da .
Passaggio 4.3.4.3
Scomponi da .
Passaggio 4.3.4.4
Riscrivi come .
Passaggio 4.3.4.5
Scomponi da .
Passaggio 4.3.4.6
Riscrivi come .
Passaggio 4.3.4.7
Riordina i termini.
Passaggio 4.3.4.8
Elimina il fattore comune.
Passaggio 4.3.4.9
Riscrivi l'espressione.
Passaggio 4.3.5
Moltiplica per .
Passaggio 4.3.6
Sposta il negativo davanti alla frazione.
Passaggio 4.4
Trova il fattore di integrazione .
Passaggio 5
Valuta l'integrale .
Tocca per altri passaggi...
Passaggio 5.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.3
Moltiplica per .
Passaggio 5.4
L'integrale di rispetto a è .
Passaggio 5.5
Semplifica.
Passaggio 5.6
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.6.1
Semplifica spostando all'interno del logaritmo.
Passaggio 5.6.2
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 5.6.3
Rimuovi il valore assoluto in perché gli elevamenti a potenza con potenze pari sono sempre positivi.
Passaggio 5.6.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 6
Moltiplica entrambi i lati di per il fattore di integrazione .
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Moltiplica per .
Passaggio 6.3
Moltiplica per .
Passaggio 6.4
Moltiplica per .
Passaggio 6.5
Scomponi da .
Tocca per altri passaggi...
Passaggio 6.5.1
Scomponi da .
Passaggio 6.5.2
Scomponi da .
Passaggio 6.5.3
Scomponi da .
Passaggio 6.5.4
Scomponi da .
Passaggio 6.5.5
Scomponi da .
Passaggio 6.6
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 6.6.1
Scomponi da .
Passaggio 6.6.2
Elimina il fattore comune.
Passaggio 6.6.3
Riscrivi l'espressione.
Passaggio 7
Imposta uguale all'integrale di .
Passaggio 8
Integra per trovare .
Tocca per altri passaggi...
Passaggio 8.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8.2
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 8.3
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 8.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 8.3.2
Moltiplica per .
Passaggio 8.4
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 8.5
Riscrivi come .
Passaggio 9
Poiché l'integrale di conterrà una costante di integrazione, è possibile sostituire con .
Passaggio 10
Imposta .
Passaggio 11
Trova .
Tocca per altri passaggi...
Passaggio 11.1
Differenzia rispetto a .
Passaggio 11.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 11.3
Calcola .
Tocca per altri passaggi...
Passaggio 11.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 11.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 11.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 11.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.3.6
Somma e .
Passaggio 11.4
Differenzia usando la regola della funzione secondo cui la derivata di è .
Passaggio 11.5
Semplifica.
Tocca per altri passaggi...
Passaggio 11.5.1
Applica la proprietà distributiva.
Passaggio 11.5.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 11.5.2.1
Moltiplica per .
Passaggio 11.5.2.2
e .
Passaggio 11.5.2.3
e .
Passaggio 11.5.2.4
Sposta il negativo davanti alla frazione.
Passaggio 11.5.2.5
Moltiplica per .
Passaggio 11.5.3
Riordina i termini.
Passaggio 12
Risolvi per .
Tocca per altri passaggi...
Passaggio 12.1
Risolvi per .
Tocca per altri passaggi...
Passaggio 12.1.1
Sposta tutti i termini contenenti variabili sul lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 12.1.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 12.1.1.2
Riduci i numeratori su un comune denominatore.
Passaggio 12.1.1.3
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 12.1.1.3.1
Applica la proprietà distributiva.
Passaggio 12.1.1.3.2
Semplifica.
Tocca per altri passaggi...
Passaggio 12.1.1.3.2.1
Moltiplica per .
Passaggio 12.1.1.3.2.2
Moltiplica per .
Passaggio 12.1.1.4
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 12.1.1.4.1
Somma e .
Passaggio 12.1.1.4.2
Somma e .
Passaggio 12.1.1.4.3
Somma e .
Passaggio 12.1.1.4.4
Somma e .
Passaggio 12.1.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 12.1.1.5.1
Elimina il fattore comune.
Passaggio 12.1.1.5.2
Dividi per .
Passaggio 12.1.2
Somma a entrambi i lati dell'equazione.
Passaggio 13
Trova l'antiderivata di per trovare .
Tocca per altri passaggi...
Passaggio 13.1
Integra entrambi i lati di .
Passaggio 13.2
Calcola .
Passaggio 13.3
Applica la regola costante.
Passaggio 14
Sostituisci a in .
Passaggio 15
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.1
Applica la proprietà distributiva.
Passaggio 15.2
Semplifica.
Tocca per altri passaggi...
Passaggio 15.2.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 15.2.2
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 15.2.3
Moltiplica per .
Passaggio 15.3
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.3.1
e .
Passaggio 15.3.2
e .