Calcolo Esempi

Risolvere l''Equazione Differenziale (1-x^2y)dx+x^2(y-x)dy=0
Passaggio 1
Trova dove .
Tocca per altri passaggi...
Passaggio 1.1
Differenzia rispetto a .
Passaggio 1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Sottrai da .
Passaggio 2
Trova dove .
Tocca per altri passaggi...
Passaggio 2.1
Differenzia rispetto a .
Passaggio 2.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.3
Somma e .
Passaggio 2.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.6
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.3.6.1
Moltiplica per .
Passaggio 2.3.6.2
Sposta alla sinistra di .
Passaggio 2.3.6.3
Riscrivi come .
Passaggio 2.3.7
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.8
Sposta alla sinistra di .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Applica la proprietà distributiva.
Passaggio 2.4.2
Applica la proprietà distributiva.
Passaggio 2.4.3
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 2.4.3.1
Moltiplica per .
Passaggio 2.4.3.2
Eleva alla potenza di .
Passaggio 2.4.3.3
Eleva alla potenza di .
Passaggio 2.4.3.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.4.3.5
Somma e .
Passaggio 2.4.3.6
Sottrai da .
Passaggio 2.4.4
Riordina i termini.
Passaggio 3
Verifica che .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci a e a
Passaggio 3.2
Poiché il lato sinistro non è uguale al lato destro, l'equazione non è un'identità.
non è un'identità.
non è un'identità.
Passaggio 4
Trova il fattore di integrazione .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci a .
Passaggio 4.2
Sostituisci a .
Passaggio 4.3
Sostituisci a .
Tocca per altri passaggi...
Passaggio 4.3.1
Sostituisci a .
Passaggio 4.3.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Applica la proprietà distributiva.
Passaggio 4.3.2.2
Moltiplica per .
Passaggio 4.3.2.3
Moltiplica per .
Passaggio 4.3.2.4
Somma e .
Passaggio 4.3.2.5
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.3.2.5.1
Scomponi da .
Passaggio 4.3.2.5.2
Scomponi da .
Passaggio 4.3.2.5.3
Scomponi da .
Passaggio 4.3.3
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.3.3.1
Scomponi da .
Passaggio 4.3.3.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.3.3.2.1
Scomponi da .
Passaggio 4.3.3.2.2
Elimina il fattore comune.
Passaggio 4.3.3.2.3
Riscrivi l'espressione.
Passaggio 4.3.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.3.4.1
Scomponi da .
Passaggio 4.3.4.2
Scomponi da .
Passaggio 4.3.4.3
Scomponi da .
Passaggio 4.3.4.4
Riordina i termini.
Passaggio 4.3.4.5
Elimina il fattore comune.
Passaggio 4.3.4.6
Riscrivi l'espressione.
Passaggio 4.3.5
Moltiplica per .
Passaggio 4.3.6
Sposta il negativo davanti alla frazione.
Passaggio 4.4
Trova il fattore di integrazione .
Passaggio 5
Valuta l'integrale .
Tocca per altri passaggi...
Passaggio 5.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.3
Moltiplica per .
Passaggio 5.4
L'integrale di rispetto a è .
Passaggio 5.5
Semplifica.
Passaggio 5.6
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.6.1
Semplifica spostando all'interno del logaritmo.
Passaggio 5.6.2
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 5.6.3
Rimuovi il valore assoluto in perché gli elevamenti a potenza con potenze pari sono sempre positivi.
Passaggio 5.6.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 6
Moltiplica entrambi i lati di per il fattore di integrazione .
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Moltiplica per .
Passaggio 6.3
Moltiplica per .
Passaggio 6.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.4.1
Elimina il fattore comune.
Passaggio 6.4.2
Riscrivi l'espressione.
Passaggio 7
Imposta uguale all'integrale di .
Passaggio 8
Integra per trovare .
Tocca per altri passaggi...
Passaggio 8.1
Dividi il singolo integrale in più integrali.
Passaggio 8.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 8.3
Applica la regola costante.
Passaggio 8.4
Semplifica.
Passaggio 9
Poiché l'integrale di conterrà una costante di integrazione, è possibile sostituire con .
Passaggio 10
Imposta .
Passaggio 11
Trova .
Tocca per altri passaggi...
Passaggio 11.1
Differenzia rispetto a .
Passaggio 11.2
Differenzia.
Tocca per altri passaggi...
Passaggio 11.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 11.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.3
Calcola .
Tocca per altri passaggi...
Passaggio 11.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 11.3.3
Moltiplica per .
Passaggio 11.4
Differenzia usando la regola della funzione secondo cui la derivata di è .
Passaggio 11.5
Semplifica.
Tocca per altri passaggi...
Passaggio 11.5.1
Sottrai da .
Passaggio 11.5.2
Riordina i termini.
Passaggio 12
Risolvi per .
Tocca per altri passaggi...
Passaggio 12.1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 12.1.1
Somma a entrambi i lati dell'equazione.
Passaggio 12.1.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 12.1.2.1
Dividi la frazione in due frazioni.
Passaggio 12.1.2.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 12.1.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 12.1.2.2.1.1
Elimina il fattore comune.
Passaggio 12.1.2.2.1.2
Dividi per .
Passaggio 12.1.2.2.2
Riscrivi come .
Passaggio 12.1.3
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 12.1.3.1
Somma e .
Passaggio 12.1.3.2
Somma e .
Passaggio 13
Trova l'antiderivata di per trovare .
Tocca per altri passaggi...
Passaggio 13.1
Integra entrambi i lati di .
Passaggio 13.2
Calcola .
Passaggio 13.3
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 13.4
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 13.4.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 13.4.2
Moltiplica per .
Passaggio 13.5
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 13.6
Riscrivi come .
Passaggio 14
Sostituisci a in .
Passaggio 15
e .