Calcolo Esempi

Risolvere l''Equazione Differenziale 2x^2(yd)x+(3x^3+y^3)dy=0
Passaggio 1
Trova dove .
Tocca per altri passaggi...
Passaggio 1.1
Differenzia rispetto a .
Passaggio 1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4
Moltiplica per .
Passaggio 2
Trova dove .
Tocca per altri passaggi...
Passaggio 2.1
Differenzia rispetto a .
Passaggio 2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Somma e .
Passaggio 3
Verifica che .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci a e a
Passaggio 3.2
Poiché il lato sinistro non è uguale al lato destro, l'equazione non è un'identità.
non è un'identità.
non è un'identità.
Passaggio 4
Trova il fattore di integrazione .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci a .
Passaggio 4.2
Sostituisci a .
Passaggio 4.3
Sostituisci a .
Tocca per altri passaggi...
Passaggio 4.3.1
Sostituisci a .
Passaggio 4.3.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.3.2.1.1
Scomponi da .
Passaggio 4.3.2.1.2
Scomponi da .
Passaggio 4.3.2.1.3
Scomponi da .
Passaggio 4.3.2.2
Moltiplica per .
Passaggio 4.3.2.3
Sottrai da .
Passaggio 4.3.3
Sostituisci a .
Tocca per altri passaggi...
Passaggio 4.3.3.1
Elimina il fattore comune.
Passaggio 4.3.3.2
Riscrivi l'espressione.
Passaggio 4.4
Trova il fattore di integrazione .
Passaggio 5
Valuta l'integrale .
Tocca per altri passaggi...
Passaggio 5.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5.2
L'integrale di rispetto a è .
Passaggio 5.3
Semplifica.
Passaggio 5.4
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.4.1
Semplifica spostando all'interno del logaritmo.
Passaggio 5.4.2
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 6
Moltiplica entrambi i lati di per il fattore di integrazione .
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 6.2.1
Sposta .
Passaggio 6.2.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 6.2.2.1
Eleva alla potenza di .
Passaggio 6.2.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 6.2.3
Scrivi come una frazione con un comune denominatore.
Passaggio 6.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 6.2.5
Somma e .
Passaggio 6.3
Moltiplica per .
Passaggio 6.4
Applica la proprietà distributiva.
Passaggio 6.5
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 6.5.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 6.5.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.5.3
e .
Passaggio 6.5.4
Riduci i numeratori su un comune denominatore.
Passaggio 6.5.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.5.5.1
Moltiplica per .
Passaggio 6.5.5.2
Somma e .
Passaggio 7
Imposta uguale all'integrale di .
Passaggio 8
Integra per trovare .
Tocca per altri passaggi...
Passaggio 8.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 8.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 8.3.1
Riscrivi come .
Passaggio 8.3.2
Semplifica.
Tocca per altri passaggi...
Passaggio 8.3.2.1
e .
Passaggio 8.3.2.2
e .
Passaggio 8.3.2.3
Sposta alla sinistra di .
Passaggio 8.3.2.4
Moltiplica per .
Passaggio 8.3.2.5
e .
Passaggio 8.3.3
Riordina i termini.
Passaggio 9
Poiché l'integrale di conterrà una costante di integrazione, è possibile sostituire con .
Passaggio 10
Imposta .
Passaggio 11
Trova .
Tocca per altri passaggi...
Passaggio 11.1
Differenzia rispetto a .
Passaggio 11.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 11.3
Calcola .
Tocca per altri passaggi...
Passaggio 11.3.1
e .
Passaggio 11.3.2
e .
Passaggio 11.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 11.3.5
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 11.3.6
e .
Passaggio 11.3.7
Riduci i numeratori su un comune denominatore.
Passaggio 11.3.8
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 11.3.8.1
Moltiplica per .
Passaggio 11.3.8.2
Sottrai da .
Passaggio 11.3.9
e .
Passaggio 11.3.10
Moltiplica per .
Passaggio 11.3.11
Moltiplica per .
Passaggio 11.3.12
Moltiplica per .
Passaggio 11.3.13
Scomponi da .
Passaggio 11.3.14
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 11.3.14.1
Scomponi da .
Passaggio 11.3.14.2
Elimina il fattore comune.
Passaggio 11.3.14.3
Riscrivi l'espressione.
Passaggio 11.3.14.4
Dividi per .
Passaggio 11.4
Differenzia usando la regola della funzione secondo cui la derivata di è .
Passaggio 11.5
Semplifica.
Tocca per altri passaggi...
Passaggio 11.5.1
Riordina i termini.
Passaggio 11.5.2
Riordina i fattori in .
Passaggio 12
Risolvi per .
Tocca per altri passaggi...
Passaggio 12.1
Risolvi per .
Tocca per altri passaggi...
Passaggio 12.1.1
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 12.1.1.1
Sottrai da .
Passaggio 12.1.1.2
Somma e .
Passaggio 12.1.2
Somma a entrambi i lati dell'equazione.
Passaggio 13
Trova l'antiderivata di per trovare .
Tocca per altri passaggi...
Passaggio 13.1
Integra entrambi i lati di .
Passaggio 13.2
Calcola .
Passaggio 13.3
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 14
Sostituisci a in .
Passaggio 15
Semplifica .
Tocca per altri passaggi...
Passaggio 15.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.1.1
e .
Passaggio 15.1.2
e .
Passaggio 15.1.3
e .
Passaggio 15.2
Riordina i fattori in .