Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Dividi per ciascun termine in e semplifica.
Passaggio 1.1.1
Dividi per ciascun termine in .
Passaggio 1.1.2
Semplifica il lato sinistro.
Passaggio 1.1.2.1
Elimina il fattore comune di .
Passaggio 1.1.2.1.1
Elimina il fattore comune.
Passaggio 1.1.2.1.2
Dividi per .
Passaggio 1.1.3
Semplifica il lato destro.
Passaggio 1.1.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.1.3.2
Combina.
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
Raggruppa i fattori.
Passaggio 1.3
Moltiplica ogni lato per .
Passaggio 1.4
Semplifica.
Passaggio 1.4.1
Combina.
Passaggio 1.4.2
Combina.
Passaggio 1.4.3
Elimina il fattore comune di .
Passaggio 1.4.3.1
Elimina il fattore comune.
Passaggio 1.4.3.2
Riscrivi l'espressione.
Passaggio 1.4.4
Elimina il fattore comune di .
Passaggio 1.4.4.1
Elimina il fattore comune.
Passaggio 1.4.4.2
Riscrivi l'espressione.
Passaggio 1.5
Riscrivi l'equazione.
Passaggio 2
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Integra il lato sinistro.
Passaggio 2.2.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.2.3
Semplifica la risposta.
Passaggio 2.2.3.1
Riscrivi come .
Passaggio 2.2.3.2
Semplifica.
Passaggio 2.2.3.2.1
Moltiplica per .
Passaggio 2.2.3.2.2
Moltiplica per .
Passaggio 2.3
Integra il lato destro.
Passaggio 2.3.1
Applica le regole di base degli esponenti.
Passaggio 2.3.1.1
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 2.3.1.2
Moltiplica gli esponenti in .
Passaggio 2.3.1.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.3.1.2.2
Moltiplica per .
Passaggio 2.3.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.3
Semplifica la risposta.
Passaggio 2.3.3.1
Riscrivi come .
Passaggio 2.3.3.2
Semplifica.
Passaggio 2.3.3.2.1
Moltiplica per .
Passaggio 2.3.3.2.2
Sposta alla sinistra di .
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Passaggio 3.2.1
Semplifica il lato sinistro.
Passaggio 3.2.1.1
Semplifica .
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Passaggio 3.2.2.1
Semplifica .
Passaggio 3.2.2.1.1
Applica la proprietà distributiva.
Passaggio 3.2.2.1.2
Elimina il fattore comune di .
Passaggio 3.2.2.1.2.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.2.2.1.2.2
Scomponi da .
Passaggio 3.2.2.1.2.3
Scomponi da .
Passaggio 3.2.2.1.2.4
Elimina il fattore comune.
Passaggio 3.2.2.1.2.5
Riscrivi l'espressione.
Passaggio 3.2.2.1.3
e .
Passaggio 3.2.2.1.4
Semplifica l'espressione.
Passaggio 3.2.2.1.4.1
Moltiplica per .
Passaggio 3.2.2.1.4.2
Sposta il negativo davanti alla frazione.
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
Semplifica .
Passaggio 3.4.1
Scomponi da .
Passaggio 3.4.1.1
Scomponi da .
Passaggio 3.4.1.2
Scomponi da .
Passaggio 3.4.1.3
Scomponi da .
Passaggio 3.4.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.4.3
Riduci i numeratori su un comune denominatore.
Passaggio 3.4.4
e .
Passaggio 3.4.5
Riscrivi come .
Passaggio 3.4.5.1
Scomponi la potenza perfetta su .
Passaggio 3.4.5.2
Scomponi la potenza perfetta su .
Passaggio 3.4.5.3
Riordina la frazione .
Passaggio 3.4.6
Estrai i termini dal radicale.
Passaggio 3.4.7
e .
Passaggio 3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.