Inserisci un problema...
Calcolo Esempi
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Moltiplica ogni lato per .
Passaggio 3
Passaggio 3.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 3.2
Elimina il fattore comune di .
Passaggio 3.2.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.2.2
Elimina il fattore comune.
Passaggio 3.2.3
Riscrivi l'espressione.
Passaggio 3.3
Sposta il negativo davanti alla frazione.
Passaggio 3.4
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 3.5
e .
Passaggio 3.6
Elimina il fattore comune di .
Passaggio 3.6.1
Scomponi da .
Passaggio 3.6.2
Scomponi da .
Passaggio 3.6.3
Elimina il fattore comune.
Passaggio 3.6.4
Riscrivi l'espressione.
Passaggio 3.7
e .
Passaggio 3.8
Sposta il negativo davanti alla frazione.
Passaggio 4
Passaggio 4.1
Imposta un integrale su ciascun lato.
Passaggio 4.2
Integra il lato sinistro.
Passaggio 4.2.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4.2.2
Sia . Allora . Riscrivi usando e .
Passaggio 4.2.2.1
Sia . Trova .
Passaggio 4.2.2.1.1
Differenzia .
Passaggio 4.2.2.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.2.2.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.2.2.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.2.2.1.5
Somma e .
Passaggio 4.2.2.2
Riscrivi il problema usando e .
Passaggio 4.2.3
L'integrale di rispetto a è .
Passaggio 4.2.4
Semplifica.
Passaggio 4.2.5
Sostituisci tutte le occorrenze di con .
Passaggio 4.3
Integra il lato destro.
Passaggio 4.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4.3.2
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4.3.3
Moltiplica per .
Passaggio 4.3.4
Sia . Allora , quindi . Riscrivi usando e .
Passaggio 4.3.4.1
Sia . Trova .
Passaggio 4.3.4.1.1
Differenzia .
Passaggio 4.3.4.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.3.4.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.3.4.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.4.1.5
Somma e .
Passaggio 4.3.4.2
Riscrivi il problema usando e .
Passaggio 4.3.5
Semplifica.
Passaggio 4.3.5.1
Moltiplica per .
Passaggio 4.3.5.2
Sposta alla sinistra di .
Passaggio 4.3.6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4.3.7
Semplifica.
Passaggio 4.3.7.1
e .
Passaggio 4.3.7.2
Elimina il fattore comune di e .
Passaggio 4.3.7.2.1
Scomponi da .
Passaggio 4.3.7.2.2
Elimina i fattori comuni.
Passaggio 4.3.7.2.2.1
Scomponi da .
Passaggio 4.3.7.2.2.2
Elimina il fattore comune.
Passaggio 4.3.7.2.2.3
Riscrivi l'espressione.
Passaggio 4.3.7.2.2.4
Dividi per .
Passaggio 4.3.8
L'integrale di rispetto a è .
Passaggio 4.3.9
Semplifica.
Passaggio 4.3.10
Sostituisci tutte le occorrenze di con .
Passaggio 4.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 5
Passaggio 5.1
Sposta tutti i termini contenenti un logaritmo sul lato sinistro dell'equazione.
Passaggio 5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.3
Dividi per ciascun termine in e semplifica.
Passaggio 5.3.1
Dividi per ciascun termine in .
Passaggio 5.3.2
Semplifica il lato sinistro.
Passaggio 5.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.3.2.2
Dividi per .
Passaggio 5.3.3
Semplifica il lato destro.
Passaggio 5.3.3.1
Semplifica ciascun termine.
Passaggio 5.3.3.1.1
Sposta quello negativo dal denominatore di .
Passaggio 5.3.3.1.2
Riscrivi come .
Passaggio 5.3.3.1.3
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.3.3.1.4
Dividi per .
Passaggio 5.4
Sposta tutti i termini contenenti un logaritmo sul lato sinistro dell'equazione.
Passaggio 5.5
Usa la proprietà del quoziente dei logaritmi, .
Passaggio 5.6
Per risolvere per , riscrivi l'equazione usando le proprietà dei logaritmi.
Passaggio 5.7
Riscrivi in forma esponenziale usando la definizione di logaritmo. Se e sono numeri reali positivi e , allora è equivalente a .
Passaggio 5.8
Risolvi per .
Passaggio 5.8.1
Riscrivi l'equazione come .
Passaggio 5.8.2
Moltiplica ogni lato per .
Passaggio 5.8.3
Semplifica il lato sinistro.
Passaggio 5.8.3.1
Elimina il fattore comune di .
Passaggio 5.8.3.1.1
Elimina il fattore comune.
Passaggio 5.8.3.1.2
Riscrivi l'espressione.
Passaggio 5.8.4
Risolvi per .
Passaggio 5.8.4.1
Riordina i fattori in .
Passaggio 5.8.4.2
Rimuovi il valore assoluto. Ciò crea un sul lato destro dell'equazione perché .
Passaggio 5.8.4.3
Riordina i fattori in .
Passaggio 5.8.4.4
Sottrai da entrambi i lati dell'equazione.
Passaggio 6
Passaggio 6.1
Semplifica la costante dell'integrazione.
Passaggio 6.2
Combina costanti con il più o il meno.