Calcolo Esempi

Risolvere l''Equazione Differenziale (dy)/(dx)-6xy-12x=0
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.1.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.1.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.2.1
Scomponi da .
Passaggio 1.2.2
Scomponi da .
Passaggio 1.2.3
Scomponi da .
Passaggio 1.3
Moltiplica ogni lato per .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.2
e .
Passaggio 1.4.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.4.3.1
Scomponi da .
Passaggio 1.4.3.2
Elimina il fattore comune.
Passaggio 1.4.3.3
Riscrivi l'espressione.
Passaggio 1.5
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Integra il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.1
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 2.2.1.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 2.2.1.1.1
Differenzia .
Passaggio 2.2.1.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.1.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.1.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.1.1.5
Somma e .
Passaggio 2.2.1.2
Riscrivi il problema usando e .
Passaggio 2.2.2
L'integrale di rispetto a è .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Integra il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Riscrivi come .
Passaggio 2.3.3.2
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.3.2.1
e .
Passaggio 2.3.3.2.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 2.3.3.2.2.1
Scomponi da .
Passaggio 2.3.3.2.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 2.3.3.2.2.2.1
Scomponi da .
Passaggio 2.3.3.2.2.2.2
Elimina il fattore comune.
Passaggio 2.3.3.2.2.2.3
Riscrivi l'espressione.
Passaggio 2.3.3.2.2.2.4
Dividi per .
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Per risolvere per , riscrivi l'equazione usando le proprietà dei logaritmi.
Passaggio 3.2
Riscrivi in forma esponenziale usando la definizione di logaritmo. Se e sono numeri reali positivi e , allora è equivalente a .
Passaggio 3.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.1
Riscrivi l'equazione come .
Passaggio 3.3.2
Rimuovi il valore assoluto. Ciò crea un sul lato destro dell'equazione perché .
Passaggio 3.3.3
Sottrai da entrambi i lati dell'equazione.
Passaggio 4
Raggruppa i termini costanti.
Tocca per altri passaggi...
Passaggio 4.1
Riscrivi come .
Passaggio 4.2
Riordina e .
Passaggio 4.3
Combina costanti con il più o il meno.