Calcolo Esempi

Risolvere l''Equazione Differenziale xy^2(dy)/(dx)-x=1
Passaggio 1
Separa le variabili.
Tocca per altri passaggi...
Passaggio 1.1
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.1.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.1.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Dividi per ciascun termine in .
Passaggio 1.1.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.1.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.2.2.1.1
Elimina il fattore comune.
Passaggio 1.1.2.2.1.2
Riscrivi l'espressione.
Passaggio 1.1.2.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.2.2.2.1
Elimina il fattore comune.
Passaggio 1.1.2.2.2.2
Dividi per .
Passaggio 1.1.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.1.2.3.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.2.3.1.1
Elimina il fattore comune.
Passaggio 1.1.2.3.1.2
Riscrivi l'espressione.
Passaggio 1.2
Scomponi.
Tocca per altri passaggi...
Passaggio 1.2.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.2
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Moltiplica per .
Passaggio 1.2.2.2
Riordina i fattori di .
Passaggio 1.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 1.3
Raggruppa i fattori.
Passaggio 1.4
Moltiplica ogni lato per .
Passaggio 1.5
Semplifica.
Tocca per altri passaggi...
Passaggio 1.5.1
Moltiplica per .
Passaggio 1.5.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.5.2.1
Scomponi da .
Passaggio 1.5.2.2
Elimina il fattore comune.
Passaggio 1.5.2.3
Riscrivi l'espressione.
Passaggio 1.6
Riscrivi l'equazione.
Passaggio 2
Integra entrambi i lati.
Tocca per altri passaggi...
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Suddividi la frazione in frazioni multiple.
Passaggio 2.3.2
Dividi il singolo integrale in più integrali.
Passaggio 2.3.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.3.1
Elimina il fattore comune.
Passaggio 2.3.3.2
Riscrivi l'espressione.
Passaggio 2.3.4
L'integrale di rispetto a è .
Passaggio 2.3.5
Applica la regola costante.
Passaggio 2.3.6
Semplifica.
Passaggio 2.3.7
Riordina i termini.
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Applica la proprietà distributiva.
Passaggio 3.3
Semplifica spostando all'interno del logaritmo.
Passaggio 3.4
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 4
Semplifica la costante dell'integrazione.