Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Scomponi.
Passaggio 1.1.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.2
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 1.1.2.1
Moltiplica per .
Passaggio 1.1.2.2
Moltiplica per .
Passaggio 1.1.3
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.4
Semplifica il numeratore.
Passaggio 1.1.4.1
Scomponi da .
Passaggio 1.1.4.1.1
Scomponi da .
Passaggio 1.1.4.1.2
Scomponi da .
Passaggio 1.1.4.1.3
Scomponi da .
Passaggio 1.1.4.2
Moltiplica per .
Passaggio 1.2
Moltiplica ogni lato per .
Passaggio 1.3
Elimina il fattore comune di .
Passaggio 1.3.1
Scomponi da .
Passaggio 1.3.2
Elimina il fattore comune.
Passaggio 1.3.3
Riscrivi l'espressione.
Passaggio 1.4
Riscrivi l'equazione.
Passaggio 2
Passaggio 2.1
Imposta un integrale su ciascun lato.
Passaggio 2.2
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3
Integra il lato destro.
Passaggio 2.3.1
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.2
Moltiplica .
Passaggio 2.3.3
Semplifica.
Passaggio 2.3.3.1
Eleva alla potenza di .
Passaggio 2.3.3.2
Eleva alla potenza di .
Passaggio 2.3.3.3
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.3.3.4
Somma e .
Passaggio 2.3.3.5
Sposta alla sinistra di .
Passaggio 2.3.4
Dividi il singolo integrale in più integrali.
Passaggio 2.3.5
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 2.3.7
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 2.3.8
Semplifica.
Passaggio 2.3.8.1
Semplifica.
Passaggio 2.3.8.2
Riordina i termini.
Passaggio 2.4
Raggruppa la costante dell'integrazione sul lato destro come .
Passaggio 3
Passaggio 3.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.2
Semplifica entrambi i lati dell'equazione.
Passaggio 3.2.1
Semplifica il lato sinistro.
Passaggio 3.2.1.1
Semplifica .
Passaggio 3.2.1.1.1
e .
Passaggio 3.2.1.1.2
Elimina il fattore comune di .
Passaggio 3.2.1.1.2.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.2.2
Semplifica il lato destro.
Passaggio 3.2.2.1
Semplifica .
Passaggio 3.2.2.1.1
Semplifica ciascun termine.
Passaggio 3.2.2.1.1.1
e .
Passaggio 3.2.2.1.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.1.3
Combina.
Passaggio 3.2.2.1.1.4
Elimina il fattore comune di .
Passaggio 3.2.2.1.1.4.1
Scomponi da .
Passaggio 3.2.2.1.1.4.2
Scomponi da .
Passaggio 3.2.2.1.1.4.3
Elimina il fattore comune.
Passaggio 3.2.2.1.1.4.4
Riscrivi l'espressione.
Passaggio 3.2.2.1.1.5
e .
Passaggio 3.2.2.1.1.6
Semplifica ciascun termine.
Passaggio 3.2.2.1.1.6.1
Moltiplica per .
Passaggio 3.2.2.1.1.6.2
Moltiplica per .
Passaggio 3.2.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.2.1.3
Semplifica.
Passaggio 3.2.2.1.3.1
Elimina il fattore comune di .
Passaggio 3.2.2.1.3.1.1
Scomponi da .
Passaggio 3.2.2.1.3.1.2
Elimina il fattore comune.
Passaggio 3.2.2.1.3.1.3
Riscrivi l'espressione.
Passaggio 3.2.2.1.3.2
Moltiplica .
Passaggio 3.2.2.1.3.2.1
Moltiplica per .
Passaggio 3.2.2.1.3.2.2
e .
Passaggio 3.2.2.1.4
Sposta il negativo davanti alla frazione.
Passaggio 3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.4
Semplifica .
Passaggio 3.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.4.2
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 3.4.2.1
Moltiplica per .
Passaggio 3.4.2.2
Moltiplica per .
Passaggio 3.4.3
Riduci i numeratori su un comune denominatore.
Passaggio 3.4.4
Semplifica il numeratore.
Passaggio 3.4.4.1
Scomponi da .
Passaggio 3.4.4.1.1
Scomponi da .
Passaggio 3.4.4.1.2
Scomponi da .
Passaggio 3.4.4.1.3
Scomponi da .
Passaggio 3.4.4.2
Moltiplica per .
Passaggio 3.4.5
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.4.6
Semplifica i termini.
Passaggio 3.4.6.1
e .
Passaggio 3.4.6.2
Riduci i numeratori su un comune denominatore.
Passaggio 3.4.7
Semplifica il numeratore.
Passaggio 3.4.7.1
Applica la proprietà distributiva.
Passaggio 3.4.7.2
Moltiplica per sommando gli esponenti.
Passaggio 3.4.7.2.1
Moltiplica per .
Passaggio 3.4.7.2.1.1
Eleva alla potenza di .
Passaggio 3.4.7.2.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.4.7.2.2
Somma e .
Passaggio 3.4.7.3
Sposta alla sinistra di .
Passaggio 3.4.7.4
Moltiplica per .
Passaggio 3.4.8
Riscrivi come .
Passaggio 3.4.9
Moltiplica per .
Passaggio 3.4.10
Combina e semplifica il denominatore.
Passaggio 3.4.10.1
Moltiplica per .
Passaggio 3.4.10.2
Eleva alla potenza di .
Passaggio 3.4.10.3
Eleva alla potenza di .
Passaggio 3.4.10.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.4.10.5
Somma e .
Passaggio 3.4.10.6
Riscrivi come .
Passaggio 3.4.10.6.1
Usa per riscrivere come .
Passaggio 3.4.10.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.4.10.6.3
e .
Passaggio 3.4.10.6.4
Elimina il fattore comune di .
Passaggio 3.4.10.6.4.1
Elimina il fattore comune.
Passaggio 3.4.10.6.4.2
Riscrivi l'espressione.
Passaggio 3.4.10.6.5
Calcola l'esponente.
Passaggio 3.4.11
Combina usando la regola del prodotto per i radicali.
Passaggio 3.4.12
Riordina i fattori in .
Passaggio 3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Semplifica la costante dell'integrazione.