Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 1.2
Differenzia.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4
Semplifica l'espressione.
Passaggio 1.2.4.1
Somma e .
Passaggio 1.2.4.2
Sposta alla sinistra di .
Passaggio 1.2.5
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.7
Somma e .
Passaggio 1.2.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.9
Moltiplica.
Passaggio 1.2.9.1
Moltiplica per .
Passaggio 1.2.9.2
Moltiplica per .
Passaggio 1.2.10
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.11
Sposta alla sinistra di .
Passaggio 1.3
Semplifica.
Passaggio 1.3.1
Applica la proprietà distributiva.
Passaggio 1.3.2
Applica la proprietà distributiva.
Passaggio 1.3.3
Applica la proprietà distributiva.
Passaggio 1.3.4
Applica la proprietà distributiva.
Passaggio 1.3.5
Semplifica il numeratore.
Passaggio 1.3.5.1
Semplifica ciascun termine.
Passaggio 1.3.5.1.1
Moltiplica per .
Passaggio 1.3.5.1.2
Moltiplica per sommando gli esponenti.
Passaggio 1.3.5.1.2.1
Sposta .
Passaggio 1.3.5.1.2.2
Moltiplica per .
Passaggio 1.3.5.1.2.2.1
Eleva alla potenza di .
Passaggio 1.3.5.1.2.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.3.5.1.2.3
Somma e .
Passaggio 1.3.5.1.3
Moltiplica per .
Passaggio 1.3.5.1.4
Moltiplica per sommando gli esponenti.
Passaggio 1.3.5.1.4.1
Sposta .
Passaggio 1.3.5.1.4.2
Moltiplica per .
Passaggio 1.3.5.1.4.2.1
Eleva alla potenza di .
Passaggio 1.3.5.1.4.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.3.5.1.4.3
Somma e .
Passaggio 1.3.5.1.5
Moltiplica per .
Passaggio 1.3.5.2
Combina i termini opposti in .
Passaggio 1.3.5.2.1
Somma e .
Passaggio 1.3.5.2.2
Somma e .
Passaggio 1.3.5.3
Somma e .
Passaggio 1.3.6
Riordina i termini.
Passaggio 1.3.7
Semplifica il denominatore.
Passaggio 1.3.7.1
Riscrivi come .
Passaggio 1.3.7.2
Riordina e .
Passaggio 1.3.7.3
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza usando la formula della differenza di quadrati, dove e .
Passaggio 1.3.7.4
Applica la regola del prodotto a .
Passaggio 2
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 2.3
Differenzia usando la regola della potenza.
Passaggio 2.3.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.2
Moltiplica per .
Passaggio 2.4
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.5
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.5.1
Per applicare la regola della catena, imposta come .
Passaggio 2.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.5.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.6
Differenzia.
Passaggio 2.6.1
Sposta alla sinistra di .
Passaggio 2.6.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.6.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.6.4
Somma e .
Passaggio 2.6.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.6.6
Moltiplica per .
Passaggio 2.6.7
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.6.8
Moltiplica per .
Passaggio 2.7
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.7.1
Per applicare la regola della catena, imposta come .
Passaggio 2.7.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.7.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.8
Differenzia.
Passaggio 2.8.1
Sposta alla sinistra di .
Passaggio 2.8.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.8.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.8.4
Somma e .
Passaggio 2.8.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.8.6
Riduci le frazioni.
Passaggio 2.8.6.1
Moltiplica per .
Passaggio 2.8.6.2
e .
Passaggio 2.9
Semplifica.
Passaggio 2.9.1
Applica la regola del prodotto a .
Passaggio 2.9.2
Applica la proprietà distributiva.
Passaggio 2.9.3
Applica la proprietà distributiva.
Passaggio 2.9.4
Semplifica il numeratore.
Passaggio 2.9.4.1
Scomponi da .
Passaggio 2.9.4.1.1
Scomponi da .
Passaggio 2.9.4.1.2
Scomponi da .
Passaggio 2.9.4.1.3
Scomponi da .
Passaggio 2.9.4.1.4
Scomponi da .
Passaggio 2.9.4.1.5
Scomponi da .
Passaggio 2.9.4.2
Raccogli gli esponenti.
Passaggio 2.9.4.2.1
Moltiplica per .
Passaggio 2.9.4.2.2
Moltiplica per .
Passaggio 2.9.4.3
Semplifica ciascun termine.
Passaggio 2.9.4.3.1
Espandi usando il metodo FOIL.
Passaggio 2.9.4.3.1.1
Applica la proprietà distributiva.
Passaggio 2.9.4.3.1.2
Applica la proprietà distributiva.
Passaggio 2.9.4.3.1.3
Applica la proprietà distributiva.
Passaggio 2.9.4.3.2
Semplifica e combina i termini simili.
Passaggio 2.9.4.3.2.1
Semplifica ciascun termine.
Passaggio 2.9.4.3.2.1.1
Moltiplica per .
Passaggio 2.9.4.3.2.1.2
Moltiplica per .
Passaggio 2.9.4.3.2.1.3
Sposta alla sinistra di .
Passaggio 2.9.4.3.2.1.4
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 2.9.4.3.2.1.5
Moltiplica per sommando gli esponenti.
Passaggio 2.9.4.3.2.1.5.1
Sposta .
Passaggio 2.9.4.3.2.1.5.2
Moltiplica per .
Passaggio 2.9.4.3.2.2
Somma e .
Passaggio 2.9.4.3.2.3
Somma e .
Passaggio 2.9.4.3.3
Applica la proprietà distributiva.
Passaggio 2.9.4.3.4
Moltiplica per .
Passaggio 2.9.4.3.5
Moltiplica per sommando gli esponenti.
Passaggio 2.9.4.3.5.1
Sposta .
Passaggio 2.9.4.3.5.2
Moltiplica per .
Passaggio 2.9.4.3.6
Applica la proprietà distributiva.
Passaggio 2.9.4.3.7
Moltiplica per .
Passaggio 2.9.4.3.8
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 2.9.4.3.9
Semplifica ciascun termine.
Passaggio 2.9.4.3.9.1
Moltiplica per sommando gli esponenti.
Passaggio 2.9.4.3.9.1.1
Sposta .
Passaggio 2.9.4.3.9.1.2
Moltiplica per .
Passaggio 2.9.4.3.9.2
Moltiplica per .
Passaggio 2.9.4.4
Combina i termini opposti in .
Passaggio 2.9.4.4.1
Sottrai da .
Passaggio 2.9.4.4.2
Somma e .
Passaggio 2.9.4.5
Somma e .
Passaggio 2.9.4.6
Somma e .
Passaggio 2.9.5
Raccogli i termini.
Passaggio 2.9.5.1
Moltiplica gli esponenti in .
Passaggio 2.9.5.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.9.5.1.2
Moltiplica per .
Passaggio 2.9.5.2
Moltiplica gli esponenti in .
Passaggio 2.9.5.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.9.5.2.2
Moltiplica per .
Passaggio 2.9.5.3
Elimina il fattore comune di e .
Passaggio 2.9.5.3.1
Scomponi da .
Passaggio 2.9.5.3.2
Elimina i fattori comuni.
Passaggio 2.9.5.3.2.1
Scomponi da .
Passaggio 2.9.5.3.2.2
Elimina il fattore comune.
Passaggio 2.9.5.3.2.3
Riscrivi l'espressione.
Passaggio 2.9.5.4
Elimina il fattore comune di e .
Passaggio 2.9.5.4.1
Scomponi da .
Passaggio 2.9.5.4.2
Elimina i fattori comuni.
Passaggio 2.9.5.4.2.1
Scomponi da .
Passaggio 2.9.5.4.2.2
Elimina il fattore comune.
Passaggio 2.9.5.4.2.3
Riscrivi l'espressione.
Passaggio 3
La derivata seconda di rispetto a è .