Calcolo Esempi

Valutare l''Integrale integrale di x radice quadrata di 1-x^4 rispetto a x
Passaggio 1
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 1.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia .
Passaggio 1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2
Riscrivi il problema utilizzando e .
Passaggio 2
Semplifica.
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.1.1
Usa per riscrivere come .
Passaggio 2.1.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.1.3
e .
Passaggio 2.1.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 2.1.4.1
Scomponi da .
Passaggio 2.1.4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 2.1.4.2.1
Scomponi da .
Passaggio 2.1.4.2.2
Elimina il fattore comune.
Passaggio 2.1.4.2.3
Riscrivi l'espressione.
Passaggio 2.1.4.2.4
Dividi per .
Passaggio 2.2
e .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Sia , dove . Allora . Si noti che, poiché , è positivo.
Passaggio 5
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 5.1
Semplifica .
Tocca per altri passaggi...
Passaggio 5.1.1
Applica l'identità pitagorica.
Passaggio 5.1.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 5.2
Semplifica.
Tocca per altri passaggi...
Passaggio 5.2.1
Eleva alla potenza di .
Passaggio 5.2.2
Eleva alla potenza di .
Passaggio 5.2.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 5.2.4
Somma e .
Passaggio 6
Utilizza la formula di bisezione per riscrivere come .
Passaggio 7
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8
Semplifica.
Tocca per altri passaggi...
Passaggio 8.1
Moltiplica per .
Passaggio 8.2
Moltiplica per .
Passaggio 9
Dividi il singolo integrale in più integrali.
Passaggio 10
Applica la regola costante.
Passaggio 11
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 11.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 11.1.1
Differenzia .
Passaggio 11.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 11.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 11.1.4
Moltiplica per .
Passaggio 11.2
Riscrivi il problema utilizzando e .
Passaggio 12
e .
Passaggio 13
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 14
L'integrale di rispetto a è .
Passaggio 15
Semplifica.
Passaggio 16
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 16.1
Sostituisci tutte le occorrenze di con .
Passaggio 16.2
Sostituisci tutte le occorrenze di con .
Passaggio 16.3
Sostituisci tutte le occorrenze di con .
Passaggio 16.4
Sostituisci tutte le occorrenze di con .
Passaggio 16.5
Sostituisci tutte le occorrenze di con .
Passaggio 17
Semplifica.
Tocca per altri passaggi...
Passaggio 17.1
e .
Passaggio 17.2
Applica la proprietà distributiva.
Passaggio 17.3
e .
Passaggio 17.4
Combina.
Passaggio 17.5
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 17.5.1
Moltiplica per .
Passaggio 17.5.2
Moltiplica per .
Passaggio 18
Riordina i termini.