Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Calcola il limite.
Passaggio 1.1.2.1.1
Sposta il limite sotto il segno radicale.
Passaggio 1.1.2.1.2
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.1.3
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.2.1.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.3
Semplifica la risposta.
Passaggio 1.1.2.3.1
Eleva alla potenza di .
Passaggio 1.1.2.3.2
Moltiplica per .
Passaggio 1.1.2.3.3
Sottrai da .
Passaggio 1.1.2.3.4
Riscrivi come .
Passaggio 1.1.2.3.5
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Calcola il limite.
Passaggio 1.1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.1.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.3
Semplifica la risposta.
Passaggio 1.1.3.3.1
Moltiplica per .
Passaggio 1.1.3.3.2
Sottrai da .
Passaggio 1.1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Usa per riscrivere come .
Passaggio 1.3.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.5
e .
Passaggio 1.3.6
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.7
Semplifica il numeratore.
Passaggio 1.3.7.1
Moltiplica per .
Passaggio 1.3.7.2
Sottrai da .
Passaggio 1.3.8
Sposta il negativo davanti alla frazione.
Passaggio 1.3.9
e .
Passaggio 1.3.10
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3.11
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.12
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.13
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.14
Somma e .
Passaggio 1.3.15
e .
Passaggio 1.3.16
e .
Passaggio 1.3.17
Elimina il fattore comune.
Passaggio 1.3.18
Riscrivi l'espressione.
Passaggio 1.3.19
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.20
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.21
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.22
Somma e .
Passaggio 1.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5
Riscrivi come .
Passaggio 1.6
Moltiplica per .
Passaggio 2
Poiché il numeratore è positivo e il denominatore tende a zero ed è maggiore di zero per vicino a a destra, la funzione aumenta senza limite.