Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.2
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.2.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.4
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.2.4.1
Calcola il limite di inserendo per .
Passaggio 1.1.2.4.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.5
Semplifica la risposta.
Passaggio 1.1.2.5.1
Semplifica ciascun termine.
Passaggio 1.1.2.5.1.1
Eleva alla potenza di .
Passaggio 1.1.2.5.1.2
Moltiplica per .
Passaggio 1.1.2.5.2
Sottrai da .
Passaggio 1.1.2.5.3
Sottrai da .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Calcola il limite.
Passaggio 1.1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.1.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.1.3
Sposta il limite sotto il segno radicale.
Passaggio 1.1.3.1.4
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.1.5
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.3.1.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.3
Semplifica la risposta.
Passaggio 1.1.3.3.1
Semplifica ciascun termine.
Passaggio 1.1.3.3.1.1
Moltiplica per .
Passaggio 1.1.3.3.1.2
Somma e .
Passaggio 1.1.3.3.1.3
Riscrivi come .
Passaggio 1.1.3.3.1.4
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.1.3.3.1.5
Moltiplica per .
Passaggio 1.1.3.3.2
Sottrai da .
Passaggio 1.1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4
Calcola .
Passaggio 1.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4.3
Moltiplica per .
Passaggio 1.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.6
Somma e .
Passaggio 1.3.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.9
Calcola .
Passaggio 1.3.9.1
Usa per riscrivere come .
Passaggio 1.3.9.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.9.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.9.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.9.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.9.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.9.4
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.9.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.9.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.9.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.9.8
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.9.9
e .
Passaggio 1.3.9.10
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.9.11
Semplifica il numeratore.
Passaggio 1.3.9.11.1
Moltiplica per .
Passaggio 1.3.9.11.2
Sottrai da .
Passaggio 1.3.9.12
Sposta il negativo davanti alla frazione.
Passaggio 1.3.9.13
Moltiplica per .
Passaggio 1.3.9.14
Somma e .
Passaggio 1.3.9.15
e .
Passaggio 1.3.9.16
e .
Passaggio 1.3.9.17
Sposta alla sinistra di .
Passaggio 1.3.9.18
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3.10
Sottrai da .
Passaggio 1.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5
Riscrivi come .
Passaggio 2
Passaggio 2.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.2
Dividi il numero usando la regola del prodotto di limiti quando tende a .
Passaggio 2.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.6
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.7
Sposta il limite sotto il segno radicale.
Passaggio 2.8
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.9
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.10
Calcola il limite di che è costante, mentre tende a .
Passaggio 3
Passaggio 3.1
Calcola il limite di inserendo per .
Passaggio 3.2
Calcola il limite di inserendo per .
Passaggio 4
Passaggio 4.1
Semplifica ciascun termine.
Passaggio 4.1.1
Moltiplica per .
Passaggio 4.1.2
Moltiplica per .
Passaggio 4.2
Sottrai da .
Passaggio 4.3
Elimina il fattore comune di .
Passaggio 4.3.1
Scomponi da .
Passaggio 4.3.2
Elimina il fattore comune.
Passaggio 4.3.3
Riscrivi l'espressione.
Passaggio 4.4
Moltiplica per .
Passaggio 4.5
Moltiplica per .
Passaggio 4.6
Somma e .
Passaggio 4.7
Riscrivi come .
Passaggio 4.8
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 4.9
Moltiplica per .