Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.1.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.1.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.4
Differenzia.
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.4.3
Semplifica l'espressione.
Passaggio 1.1.4.3.1
Moltiplica per .
Passaggio 1.1.4.3.2
Sposta alla sinistra di .
Passaggio 1.1.4.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.4.5
Moltiplica per .
Passaggio 1.1.5
Semplifica.
Passaggio 1.1.5.1
Applica la proprietà distributiva.
Passaggio 1.1.5.2
Moltiplica per .
Passaggio 1.1.5.3
Riordina i termini.
Passaggio 1.1.5.4
Riordina i fattori in .
Passaggio 1.2
Trova la derivata seconda.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.2.2.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.2.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.2.7
Moltiplica per .
Passaggio 1.2.2.8
Sposta alla sinistra di .
Passaggio 1.2.2.9
Moltiplica per .
Passaggio 1.2.3
Calcola .
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.2.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.3.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.2.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3.5
Moltiplica per .
Passaggio 1.2.3.6
Sposta alla sinistra di .
Passaggio 1.2.3.7
Moltiplica per .
Passaggio 1.2.4
Semplifica.
Passaggio 1.2.4.1
Applica la proprietà distributiva.
Passaggio 1.2.4.2
Raccogli i termini.
Passaggio 1.2.4.2.1
Moltiplica per .
Passaggio 1.2.4.2.2
Somma e .
Passaggio 1.2.4.3
Riordina i termini.
Passaggio 1.2.4.4
Riordina i fattori in .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Scomponi da .
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.2
Scomponi da .
Passaggio 2.2.3
Scomponi da .
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a e risolvi per .
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Risolvi per .
Passaggio 2.4.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 2.4.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 2.4.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 2.5
Imposta uguale a e risolvi per .
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Risolvi per .
Passaggio 2.5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.5.2.2.1
Dividi per ciascun termine in .
Passaggio 2.5.2.2.2
Semplifica il lato sinistro.
Passaggio 2.5.2.2.2.1
Elimina il fattore comune di .
Passaggio 2.5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.5.2.2.2.1.2
Dividi per .
Passaggio 2.5.2.2.3
Semplifica il lato destro.
Passaggio 2.5.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
Passaggio 3.1
Sostituisci in per trovare il valore di .
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Passaggio 3.1.2.1
Moltiplica .
Passaggio 3.1.2.1.1
Moltiplica per .
Passaggio 3.1.2.1.2
e .
Passaggio 3.1.2.1.3
Moltiplica per .
Passaggio 3.1.2.2
Sposta il negativo davanti alla frazione.
Passaggio 3.1.2.3
Elimina il fattore comune di .
Passaggio 3.1.2.3.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.1.2.3.2
Elimina il fattore comune.
Passaggio 3.1.2.3.3
Riscrivi l'espressione.
Passaggio 3.1.2.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 3.1.2.5
Moltiplica per .
Passaggio 3.1.2.6
Sposta alla sinistra di .
Passaggio 3.1.2.7
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Semplifica ciascun termine.
Passaggio 5.2.1.1
Moltiplica per .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 5.2.1.4
e .
Passaggio 5.2.1.5
Sposta il negativo davanti alla frazione.
Passaggio 5.2.1.6
Sostituisci con un'approssimazione.
Passaggio 5.2.1.7
Eleva alla potenza di .
Passaggio 5.2.1.8
Dividi per .
Passaggio 5.2.1.9
Moltiplica per .
Passaggio 5.2.1.10
Moltiplica per .
Passaggio 5.2.1.11
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 5.2.1.12
e .
Passaggio 5.2.2
Somma e .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Moltiplica per .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 6.2.1.4
e .
Passaggio 6.2.1.5
Sposta il negativo davanti alla frazione.
Passaggio 6.2.1.6
Sostituisci con un'approssimazione.
Passaggio 6.2.1.7
Eleva alla potenza di .
Passaggio 6.2.1.8
Dividi per .
Passaggio 6.2.1.9
Moltiplica per .
Passaggio 6.2.1.10
Moltiplica per .
Passaggio 6.2.1.11
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 6.2.1.12
e .
Passaggio 6.2.2
Somma e .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 8