Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.3
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.2.4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.6
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.2.6.1
Calcola il limite di inserendo per .
Passaggio 1.1.2.6.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.7
Semplifica la risposta.
Passaggio 1.1.2.7.1
Semplifica ciascun termine.
Passaggio 1.1.2.7.1.1
Eleva alla potenza di .
Passaggio 1.1.2.7.1.2
Moltiplica per .
Passaggio 1.1.2.7.1.3
Moltiplica per .
Passaggio 1.1.2.7.2
Sottrai da .
Passaggio 1.1.2.7.3
Somma e .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.2
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.3.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.3.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.5
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.3.5.1
Calcola il limite di inserendo per .
Passaggio 1.1.3.5.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.6
Semplifica la risposta.
Passaggio 1.1.3.6.1
Semplifica ciascun termine.
Passaggio 1.1.3.6.1.1
Eleva alla potenza di .
Passaggio 1.1.3.6.1.2
Moltiplica per .
Passaggio 1.1.3.6.2
Sottrai da .
Passaggio 1.1.3.6.3
Somma e .
Passaggio 1.1.3.6.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.7
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Calcola .
Passaggio 1.3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3.3
Moltiplica per .
Passaggio 1.3.4
Calcola .
Passaggio 1.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4.3
Moltiplica per .
Passaggio 1.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.6
Somma e .
Passaggio 1.3.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.9
Calcola .
Passaggio 1.3.9.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.9.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.9.3
Moltiplica per .
Passaggio 1.3.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.11
Somma e .
Passaggio 1.4
Elimina il fattore comune di e .
Passaggio 1.4.1
Scomponi da .
Passaggio 1.4.2
Scomponi da .
Passaggio 1.4.3
Scomponi da .
Passaggio 1.4.4
Elimina i fattori comuni.
Passaggio 1.4.4.1
Scomponi da .
Passaggio 1.4.4.2
Scomponi da .
Passaggio 1.4.4.3
Scomponi da .
Passaggio 1.4.4.4
Elimina il fattore comune.
Passaggio 1.4.4.5
Riscrivi l'espressione.
Passaggio 2
Poiché la funzione tende a da sinistra e a da destra, il limite non esiste.