Inserisci un problema...
Matematica di base Esempi
Passaggio 1
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 3
Passaggio 3.1
Semplifica il numeratore.
Passaggio 3.1.1
Eleva alla potenza di .
Passaggio 3.1.2
Moltiplica per .
Passaggio 3.1.3
Applica la proprietà distributiva.
Passaggio 3.1.4
Semplifica.
Passaggio 3.1.4.1
Moltiplica per .
Passaggio 3.1.4.2
Moltiplica per .
Passaggio 3.1.5
Sottrai da .
Passaggio 3.1.6
Riscrivi in una forma fattorizzata.
Passaggio 3.1.6.1
Scomponi da .
Passaggio 3.1.6.1.1
Scomponi da .
Passaggio 3.1.6.1.2
Scomponi da .
Passaggio 3.1.6.1.3
Scomponi da .
Passaggio 3.1.6.1.4
Scomponi da .
Passaggio 3.1.6.1.5
Scomponi da .
Passaggio 3.1.6.2
Scomponi mediante raccoglimento.
Passaggio 3.1.6.2.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 3.1.6.2.1.1
Scomponi da .
Passaggio 3.1.6.2.1.2
Riscrivi come più .
Passaggio 3.1.6.2.1.3
Applica la proprietà distributiva.
Passaggio 3.1.6.2.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 3.1.6.2.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.1.6.2.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.1.6.2.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 3.1.6.3
Raccogli gli esponenti.
Passaggio 3.1.6.3.1
Scomponi da .
Passaggio 3.1.6.3.2
Riscrivi come .
Passaggio 3.1.6.3.3
Scomponi da .
Passaggio 3.1.6.3.4
Riscrivi come .
Passaggio 3.1.6.3.5
Eleva alla potenza di .
Passaggio 3.1.6.3.6
Eleva alla potenza di .
Passaggio 3.1.6.3.7
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 3.1.6.3.8
Somma e .
Passaggio 3.1.6.3.9
Moltiplica per .
Passaggio 3.1.7
Riscrivi come .
Passaggio 3.1.7.1
Scomponi da .
Passaggio 3.1.7.2
Riscrivi come .
Passaggio 3.1.7.3
Sposta .
Passaggio 3.1.7.4
Riscrivi come .
Passaggio 3.1.8
Estrai i termini dal radicale.
Passaggio 3.1.9
Riscrivi come .
Passaggio 3.1.10
Applica la proprietà distributiva.
Passaggio 3.1.11
Moltiplica per .
Passaggio 3.1.12
Applica la proprietà distributiva.
Passaggio 3.2
Moltiplica per .
Passaggio 4
La risposta finale è la combinazione di entrambe le soluzioni.