Matematica di base Esempi

求解y 12/y=6/(2y-6)+1
Passaggio 1
Scomponi ogni termine.
Tocca per altri passaggi...
Passaggio 1.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1.1
Scomponi da .
Passaggio 1.1.2
Scomponi da .
Passaggio 1.1.3
Scomponi da .
Passaggio 1.2
Riduci l'espressione eliminando i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.2.1
Scomponi da .
Passaggio 1.2.2
Elimina il fattore comune.
Passaggio 1.2.3
Riscrivi l'espressione.
Passaggio 2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
I passaggi per trovare il minimo comune multiplo per sono:
1. Trova il minimo comune multiplo della parte numerica .
2. Trova il minimo comune multiplo per la parte variabile
3. Trova il minimo comune multiplo per la parte variabile composta .
4. Moltiplica tutti i minimi comuni multipli tra loro.
Passaggio 2.3
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.4
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.5
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.6
Il fattore di è stesso.
si verifica volta.
Passaggio 2.7
Il minimo comune multiplo (mcm) di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.8
Il fattore di è stesso.
si verifica volta.
Passaggio 2.9
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.10
Il minimo comune multiplo di alcuni numeri è il numero più piccolo di cui i numeri sono fattori.
Passaggio 3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica ogni termine in per .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1
Elimina il fattore comune.
Passaggio 3.2.1.2
Riscrivi l'espressione.
Passaggio 3.2.2
Applica la proprietà distributiva.
Passaggio 3.2.3
Moltiplica per .
Passaggio 3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.1.1
Scomponi da .
Passaggio 3.3.1.1.2
Elimina il fattore comune.
Passaggio 3.3.1.1.3
Riscrivi l'espressione.
Passaggio 3.3.1.2
Moltiplica per .
Passaggio 3.3.1.3
Applica la proprietà distributiva.
Passaggio 3.3.1.4
Moltiplica per .
Passaggio 3.3.1.5
Sposta alla sinistra di .
Passaggio 3.3.2
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 3.3.2.1
Sottrai da .
Passaggio 3.3.2.2
Somma e .
Passaggio 4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.2.1.1
Riordina l'espressione.
Tocca per altri passaggi...
Passaggio 4.2.1.1.1
Sposta .
Passaggio 4.2.1.1.2
Riordina e .
Passaggio 4.2.1.2
Scomponi da .
Passaggio 4.2.1.3
Scomponi da .
Passaggio 4.2.1.4
Riscrivi come .
Passaggio 4.2.1.5
Scomponi da .
Passaggio 4.2.1.6
Scomponi da .
Passaggio 4.2.2
Scomponi usando la regola del quadrato perfetto.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Riscrivi come .
Passaggio 4.2.2.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 4.2.2.3
Riscrivi il polinomio.
Passaggio 4.2.2.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 4.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.3.1
Dividi per ciascun termine in .
Passaggio 4.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.3.2.2
Dividi per .
Passaggio 4.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.3.1
Dividi per .
Passaggio 4.4
Poni uguale a .
Passaggio 4.5
Somma a entrambi i lati dell'equazione.