Matematica di base Esempi

Passaggio 1
Rimuovi il valore assoluto. Ciò crea un sul lato destro dell'equazione perché .
Passaggio 2
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 2.3.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 2.3.1.1
Scomponi da .
Passaggio 2.3.1.2
Riscrivi come più .
Passaggio 2.3.1.3
Applica la proprietà distributiva.
Passaggio 2.3.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 2.3.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 2.3.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 2.4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.6.1
Imposta uguale a .
Passaggio 2.6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.6.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.6.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.6.2.2.1
Dividi per ciascun termine in .
Passaggio 2.6.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.6.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.6.2.2.2.1.2
Dividi per .
Passaggio 2.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 2.8
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.9
Somma a entrambi i lati dell'equazione.
Passaggio 2.10
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2.11
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.12
Semplifica.
Tocca per altri passaggi...
Passaggio 2.12.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.12.1.1
Eleva alla potenza di .
Passaggio 2.12.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.12.1.2.1
Moltiplica per .
Passaggio 2.12.1.2.2
Moltiplica per .
Passaggio 2.12.1.3
Sottrai da .
Passaggio 2.12.1.4
Riscrivi come .
Passaggio 2.12.1.5
Riscrivi come .
Passaggio 2.12.1.6
Riscrivi come .
Passaggio 2.12.2
Moltiplica per .
Passaggio 2.13
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 2.14
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.