Inserisci un problema...
Algebra Esempi
Passaggio 1
La discriminante di una quadratica è l'espressione dentro il radicale della formula quadratica.
Passaggio 2
Sostituisci i valori di , e .
Passaggio 3
Passaggio 3.1
Semplifica ciascun termine.
Passaggio 3.1.1
Eleva alla potenza di .
Passaggio 3.1.2
Moltiplica .
Passaggio 3.1.2.1
Moltiplica per .
Passaggio 3.1.2.2
Moltiplica per .
Passaggio 3.2
Sottrai da .
Passaggio 4
La natura delle radici della quadratica può ricadere in una delle tre categorie a seconda del valore della discriminante :
significa che ci sono radici reali distinte.
significa che ci sono radici reali uguali o radice reale distinta.
significa che ci sono zero radici reali, ma radici complesse.
Poiché il discriminante è uguale a , ci sono due radici uguali o una radice reale distinta.
Una Radice reale