Algebra Esempi

Trovare Tutte Le Soluzioni Complesse (x+2)/(x-4)-1/x=4/(x^2-4x)
Passaggio 1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1
Scomponi da .
Passaggio 1.2
Scomponi da .
Passaggio 1.3
Scomponi da .
Passaggio 2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
I passaggi per trovare il minimo comune multiplo per sono:
1. Trova il minimo comune multiplo della parte numerica .
2. Trova il minimo comune multiplo per la parte variabile
3. Trova il minimo comune multiplo per la parte variabile composta .
4. Moltiplica tutti i minimi comuni multipli tra loro.
Passaggio 2.3
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.4
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.5
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.6
Il fattore di è stesso.
si verifica volta.
Passaggio 2.7
Il minimo comune multiplo (mcm) di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.8
Il fattore di è stesso.
si verifica volta.
Passaggio 2.9
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.10
Il minimo comune multiplo di alcuni numeri è il numero più piccolo di cui i numeri sono fattori.
Passaggio 3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica ogni termine in per .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
Scomponi da .
Passaggio 3.2.1.1.2
Elimina il fattore comune.
Passaggio 3.2.1.1.3
Riscrivi l'espressione.
Passaggio 3.2.1.2
Applica la proprietà distributiva.
Passaggio 3.2.1.3
Moltiplica per .
Passaggio 3.2.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.4.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.2.1.4.2
Elimina il fattore comune.
Passaggio 3.2.1.4.3
Riscrivi l'espressione.
Passaggio 3.2.1.5
Applica la proprietà distributiva.
Passaggio 3.2.1.6
Moltiplica per .
Passaggio 3.2.2
Sottrai da .
Passaggio 3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.1
Elimina il fattore comune.
Passaggio 3.3.1.2
Riscrivi l'espressione.
Passaggio 4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 4.2.1
Sottrai da .
Passaggio 4.2.2
Somma e .
Passaggio 4.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.3.1
Scomponi da .
Passaggio 4.3.2
Eleva alla potenza di .
Passaggio 4.3.3
Scomponi da .
Passaggio 4.3.4
Scomponi da .
Passaggio 4.4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4.5
Imposta uguale a .
Passaggio 4.6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.6.1
Imposta uguale a .
Passaggio 4.6.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.7
La soluzione finale è data da tutti i valori che rendono vera.