Algebra Esempi

Trovare Dove è Indefinita/Discontinua (y^4+5y^2+6)/(4y^5+12y^3)
Passaggio 1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.1.1
Scomponi da .
Passaggio 2.1.2
Scomponi da .
Passaggio 2.1.3
Scomponi da .
Passaggio 2.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.1
Imposta uguale a .
Passaggio 2.3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.3.2.2
Semplifica .
Tocca per altri passaggi...
Passaggio 2.3.2.2.1
Riscrivi come .
Passaggio 2.3.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali.
Passaggio 2.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.4.2.3
Semplifica .
Tocca per altri passaggi...
Passaggio 2.4.2.3.1
Riscrivi come .
Passaggio 2.4.2.3.2
Riscrivi come .
Passaggio 2.4.2.3.3
Riscrivi come .
Passaggio 2.4.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.4.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.4.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.4.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 4