Algebra Esempi

Trovare Tutte Le Soluzioni Complesse x^4=1
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi come .
Passaggio 2.2
Riscrivi come .
Passaggio 2.3
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Riscrivi come .
Passaggio 2.4.2
Scomponi.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 2.4.2.2
Rimuovi le parentesi non necessarie.
Passaggio 3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 4.2.3
Riscrivi come .
Passaggio 4.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 4.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 4.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 4.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Somma a entrambi i lati dell'equazione.
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.