Algebra Esempi

Tracciare y=cos(2x)
y=cos(2x)y=cos(2x)
Passaggio 1
Utilizza la forma acos(bx-c)+dacos(bxc)+d per trovare le variabili utilizzate per calcolare l'ampiezza, il periodo, lo sfasamento e la traslazione verticale.
a=1a=1
b=2b=2
c=0c=0
d=0d=0
Passaggio 2
Trova l'ampiezza |a||a|.
Ampiezza: 11
Passaggio 3
Trova il periodo di cos(2x)cos(2x).
Tocca per altri passaggi...
Passaggio 3.1
Si può calcolare il periodo della funzione usando 2π|b|2π|b|.
2π|b|2π|b|
Passaggio 3.2
Sostituisci bb con 22 nella formula per il periodo.
2π|2|2π|2|
Passaggio 3.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra 00 e 22 è 22.
2π22π2
Passaggio 3.4
Elimina il fattore comune di 22.
Tocca per altri passaggi...
Passaggio 3.4.1
Elimina il fattore comune.
2π2
Passaggio 3.4.2
Dividi π per 1.
π
π
π
Passaggio 4
Trova lo sfasamento usando la formula cb.
Tocca per altri passaggi...
Passaggio 4.1
Si può calcolare lo sfasamento della funzione da cb.
Sfasamento: cb
Passaggio 4.2
Sostituisci i valori di c e b nell'equazione per lo sfasamento.
Sfasamento: 02
Passaggio 4.3
Dividi 0 per 2.
Sfasamento: 0
Sfasamento: 0
Passaggio 5
Elenca le proprietà della funzione trigonometrica.
Ampiezza: 1
Periodo: π
Sfasamento: nessuno
Traslazione verticale: no
Passaggio 6
Seleziona alcuni punti da rappresentare graficamente.
Tocca per altri passaggi...
Passaggio 6.1
Trova il punto in corrispondenza di x=0.
Tocca per altri passaggi...
Passaggio 6.1.1
Sostituisci la variabile x con 0 nell'espressione.
f(0)=cos(2(0))
Passaggio 6.1.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.1.2.1
Moltiplica 2 per 0.
f(0)=cos(0)
Passaggio 6.1.2.2
Il valore esatto di cos(0) è 1.
f(0)=1
Passaggio 6.1.2.3
La risposta finale è 1.
1
1
1
Passaggio 6.2
Trova il punto in corrispondenza di x=π4.
Tocca per altri passaggi...
Passaggio 6.2.1
Sostituisci la variabile x con π4 nell'espressione.
f(π4)=cos(2(π4))
Passaggio 6.2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Elimina il fattore comune di 2.
Tocca per altri passaggi...
Passaggio 6.2.2.1.1
Scomponi 2 da 4.
f(π4)=cos(2(π2(2)))
Passaggio 6.2.2.1.2
Elimina il fattore comune.
f(π4)=cos(2(π22))
Passaggio 6.2.2.1.3
Riscrivi l'espressione.
f(π4)=cos(π2)
f(π4)=cos(π2)
Passaggio 6.2.2.2
Il valore esatto di cos(π2) è 0.
f(π4)=0
Passaggio 6.2.2.3
La risposta finale è 0.
0
0
0
Passaggio 6.3
Trova il punto in corrispondenza di x=π2.
Tocca per altri passaggi...
Passaggio 6.3.1
Sostituisci la variabile x con π2 nell'espressione.
f(π2)=cos(2(π2))
Passaggio 6.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.3.2.1
Elimina il fattore comune di 2.
Tocca per altri passaggi...
Passaggio 6.3.2.1.1
Elimina il fattore comune.
f(π2)=cos(2(π2))
Passaggio 6.3.2.1.2
Riscrivi l'espressione.
f(π2)=cos(π)
f(π2)=cos(π)
Passaggio 6.3.2.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
f(π2)=-cos(0)
Passaggio 6.3.2.3
Il valore esatto di cos(0) è 1.
f(π2)=-11
Passaggio 6.3.2.4
Moltiplica -1 per 1.
f(π2)=-1
Passaggio 6.3.2.5
La risposta finale è -1.
-1
-1
-1
Passaggio 6.4
Trova il punto in corrispondenza di x=3π4.
Tocca per altri passaggi...
Passaggio 6.4.1
Sostituisci la variabile x con 3π4 nell'espressione.
f(3π4)=cos(2(3π4))
Passaggio 6.4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.4.2.1
Elimina il fattore comune di 2.
Tocca per altri passaggi...
Passaggio 6.4.2.1.1
Scomponi 2 da 4.
f(3π4)=cos(2(3π2(2)))
Passaggio 6.4.2.1.2
Elimina il fattore comune.
f(3π4)=cos(2(3π22))
Passaggio 6.4.2.1.3
Riscrivi l'espressione.
f(3π4)=cos(3π2)
f(3π4)=cos(3π2)
Passaggio 6.4.2.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante.
f(3π4)=cos(π2)
Passaggio 6.4.2.3
Il valore esatto di cos(π2) è 0.
f(3π4)=0
Passaggio 6.4.2.4
La risposta finale è 0.
0
0
0
Passaggio 6.5
Trova il punto in corrispondenza di x=π.
Tocca per altri passaggi...
Passaggio 6.5.1
Sostituisci la variabile x con π nell'espressione.
f(π)=cos(2(π))
Passaggio 6.5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.5.2.1
Sottrai delle rotazioni complete di 2π fino a quando l'angolo non è maggiore o uguale a 0 e minore di 2π.
f(π)=cos(0)
Passaggio 6.5.2.2
Il valore esatto di cos(0) è 1.
f(π)=1
Passaggio 6.5.2.3
La risposta finale è 1.
1
1
1
Passaggio 6.6
Elenca i punti in una tabella.
xf(x)01π40π2-13π40π1
xf(x)01π40π2-13π40π1
Passaggio 7
Si può rappresentare graficamente la funzione trigonometrica usando l'ampiezza, il periodo, lo sfasamento, la traslazione verticale e i punti.
Ampiezza: 1
Periodo: π
Sfasamento: nessuno
Traslazione verticale: no
xf(x)01π40π2-13π40π1
Passaggio 8
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]