Inserisci un problema...
Algebra Esempi
Passaggio 1
Passaggio 1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2
Dividi per ciascun termine in e semplifica.
Passaggio 1.2.1
Dividi per ciascun termine in .
Passaggio 1.2.2
Semplifica il lato sinistro.
Passaggio 1.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.2.2.2
Dividi per .
Passaggio 1.2.3
Semplifica il lato destro.
Passaggio 1.2.3.1
Semplifica ciascun termine.
Passaggio 1.2.3.1.1
Dividi per .
Passaggio 1.2.3.1.2
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.2.3.1.3
Dividi per .
Passaggio 2
Passaggio 2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica .
Passaggio 2.2.1.1
Semplifica ciascun termine.
Passaggio 2.2.1.1.1
Riscrivi come .
Passaggio 2.2.1.1.2
Espandi usando il metodo FOIL.
Passaggio 2.2.1.1.2.1
Applica la proprietà distributiva.
Passaggio 2.2.1.1.2.2
Applica la proprietà distributiva.
Passaggio 2.2.1.1.2.3
Applica la proprietà distributiva.
Passaggio 2.2.1.1.3
Semplifica e combina i termini simili.
Passaggio 2.2.1.1.3.1
Semplifica ciascun termine.
Passaggio 2.2.1.1.3.1.1
Moltiplica per .
Passaggio 2.2.1.1.3.1.2
Riscrivi come .
Passaggio 2.2.1.1.3.1.3
Sposta alla sinistra di .
Passaggio 2.2.1.1.3.1.4
Riscrivi come .
Passaggio 2.2.1.1.3.1.5
Moltiplica per sommando gli esponenti.
Passaggio 2.2.1.1.3.1.5.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.1.1.3.1.5.2
Somma e .
Passaggio 2.2.1.1.3.2
Sottrai da .
Passaggio 2.2.1.2
Combina i termini opposti in .
Passaggio 2.2.1.2.1
Sottrai da .
Passaggio 2.2.1.2.2
Somma e .
Passaggio 3
Passaggio 3.1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 3.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.1.2
Sottrai da .
Passaggio 3.2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.3
Semplifica .
Passaggio 3.3.1
Riscrivi come .
Passaggio 3.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 3.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Passaggio 4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 4.2
Semplifica il lato destro.
Passaggio 4.2.1
Semplifica .
Passaggio 4.2.1.1
Eleva alla potenza di .
Passaggio 4.2.1.2
Somma e .
Passaggio 5
Passaggio 5.1
Sostituisci tutte le occorrenze di in con .
Passaggio 5.2
Semplifica il lato destro.
Passaggio 5.2.1
Semplifica .
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Somma e .
Passaggio 6
La soluzione del sistema è l'insieme completo di coppie ordinate che sono soluzioni valide.
Passaggio 7
Il risultato può essere mostrato in più forme.
Forma punto:
Forma dell'equazione:
Passaggio 8