Algebra Esempi

Trovare la Retta Parallela -3x-y=-4 , P=(1,4)
,
Passaggio 1
Riscrivi in forma esplicita.
Tocca per altri passaggi...
Passaggio 1.1
L'equazione in forma esplicita di una retta è , dove è il coefficiente angolare e è l'intercetta di y.
Passaggio 1.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.3.1
Dividi per ciascun termine in .
Passaggio 1.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.3.2.2
Dividi per .
Passaggio 1.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.3.1.1
Dividi per .
Passaggio 1.3.3.1.2
Sposta quello negativo dal denominatore di .
Passaggio 1.3.3.1.3
Riscrivi come .
Passaggio 1.3.3.1.4
Moltiplica per .
Passaggio 1.4
Riordina e .
Passaggio 2
Usando l'equazione in forma esplicita di una retta, il coefficiente angolare è .
Passaggio 3
Per calcolare un'equazione che sia parallela, è necessario che i coefficienti angolari siano uguali. Trova la retta parallela usando la formula della retta passante per un punto con coefficiente angolare.
Passaggio 4
Sostituisci il coefficiente angolare e un punto dato a e nella formula della retta passante per un punto con coefficiente angolare , che è derivata dall'equazione del coefficiente angolare .
Passaggio 5
Semplifica l'equazione e mantienila nella formula della retta passante per un punto con coefficiente angolare.
Passaggio 6
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Semplifica .
Tocca per altri passaggi...
Passaggio 6.1.1
Riscrivi.
Passaggio 6.1.2
Semplifica aggiungendo gli zeri.
Passaggio 6.1.3
Applica la proprietà distributiva.
Passaggio 6.1.4
Moltiplica per .
Passaggio 6.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 6.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.2.2
Somma e .
Passaggio 7