Algebra Esempi

Semplificare (x^2-x-6)/(x^2)=(x-6)/(2x)+(2x+12)/x
Passaggio 1
Scomponi ogni termine.
Tocca per altri passaggi...
Passaggio 1.1
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 1.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 1.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 1.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.2.1
Scomponi da .
Passaggio 1.2.2
Scomponi da .
Passaggio 1.2.3
Scomponi da .
Passaggio 2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Passaggio 2.3
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.4
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.5
Poiché non presenta fattori eccetto e .
è un numero primo
Passaggio 2.6
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.7
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.8
I fattori di sono , che corrisponde a moltiplicato per i fattori volte.
si verifica volte.
Passaggio 2.9
Il fattore di è stesso.
si verifica volta.
Passaggio 2.10
Il minimo comune multiplo (mcm) di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.11
Moltiplica per .
Passaggio 2.12
Il minimo comune multiplo di è la parte numerica moltiplicata per la parte variabile.
Passaggio 3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica ogni termine in per .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 3.2.1.2
e .
Passaggio 3.2.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.3.1
Elimina il fattore comune.
Passaggio 3.2.1.3.2
Riscrivi l'espressione.
Passaggio 3.2.2
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Applica la proprietà distributiva.
Passaggio 3.2.2.2
Applica la proprietà distributiva.
Passaggio 3.2.2.3
Applica la proprietà distributiva.
Passaggio 3.2.3
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 3.2.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.3.1.1
Moltiplica per .
Passaggio 3.2.3.1.2
Sposta alla sinistra di .
Passaggio 3.2.3.1.3
Moltiplica per .
Passaggio 3.2.3.2
Sottrai da .
Passaggio 3.2.4
Applica la proprietà distributiva.
Passaggio 3.2.5
Semplifica.
Tocca per altri passaggi...
Passaggio 3.2.5.1
Moltiplica per .
Passaggio 3.2.5.2
Moltiplica per .
Passaggio 3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 3.3.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.2.1
Scomponi da .
Passaggio 3.3.1.2.2
Elimina il fattore comune.
Passaggio 3.3.1.2.3
Riscrivi l'espressione.
Passaggio 3.3.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.3.1
Scomponi da .
Passaggio 3.3.1.3.2
Elimina il fattore comune.
Passaggio 3.3.1.3.3
Riscrivi l'espressione.
Passaggio 3.3.1.4
Applica la proprietà distributiva.
Passaggio 3.3.1.5
Moltiplica per .
Passaggio 3.3.1.6
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 3.3.1.7
Moltiplica .
Tocca per altri passaggi...
Passaggio 3.3.1.7.1
e .
Passaggio 3.3.1.7.2
Moltiplica per .
Passaggio 3.3.1.8
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.8.1
Scomponi da .
Passaggio 3.3.1.8.2
Elimina il fattore comune.
Passaggio 3.3.1.8.3
Riscrivi l'espressione.
Passaggio 3.3.1.9
Applica la proprietà distributiva.
Passaggio 3.3.1.10
Moltiplica per .
Passaggio 3.3.1.11
Applica la proprietà distributiva.
Passaggio 3.3.1.12
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 3.3.1.12.1
Sposta .
Passaggio 3.3.1.12.2
Moltiplica per .
Passaggio 3.3.2
Semplifica aggiungendo i termini.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Somma e .
Passaggio 3.3.2.2
Somma e .
Passaggio 4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 4.1
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.1.3
Sottrai da .
Passaggio 4.1.4
Sottrai da .
Passaggio 4.2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.2.1.1
Scomponi da .
Passaggio 4.2.1.2
Scomponi da .
Passaggio 4.2.1.3
Riscrivi come .
Passaggio 4.2.1.4
Scomponi da .
Passaggio 4.2.1.5
Scomponi da .
Passaggio 4.2.2
Scomponi.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 4.2.2.1.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 4.2.2.1.1.1
Scomponi da .
Passaggio 4.2.2.1.1.2
Riscrivi come più .
Passaggio 4.2.2.1.1.3
Applica la proprietà distributiva.
Passaggio 4.2.2.1.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 4.2.2.1.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 4.2.2.1.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 4.2.2.1.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 4.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 4.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.4.1
Imposta uguale a .
Passaggio 4.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.4.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.4.2.2.1
Dividi per ciascun termine in .
Passaggio 4.4.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.4.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 4.4.2.2.2.1.2
Dividi per .
Passaggio 4.4.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.4.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 4.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.5.1
Imposta uguale a .
Passaggio 4.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 5
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale: