Inserisci un problema...
Algebra Esempi
,
Passaggio 1
Passaggio 1.1
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 1.2
Semplifica il lato destro.
Passaggio 1.2.1
Il valore esatto di è .
Passaggio 1.3
La funzione tangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, aggiungi l'angolo di riferimento da per determinare la soluzione nel quarto quadrante.
Passaggio 1.4
Somma e .
Passaggio 1.5
Trova il periodo di .
Passaggio 1.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 1.5.2
Sostituisci con nella formula per il periodo.
Passaggio 1.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 1.5.4
Dividi per .
Passaggio 1.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 1.7
Consolida le risposte.
, per qualsiasi intero
Passaggio 1.8
Trova il dominio di .
Passaggio 1.8.1
Imposta l'argomento in in modo che sia uguale a per individuare dove l'espressione è indefinita.
, per qualsiasi intero
Passaggio 1.8.2
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 1.9
Usa ogni radice per creare gli intervalli di prova.
Passaggio 1.10
Scegli un valore di test da ciascun intervallo e sostituiscilo nella diseguaglianza originale per determinare quali intervalli sono soddisfatti dalla diseguaglianza.
Passaggio 1.10.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 1.10.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 1.10.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 1.10.1.3
Il lato sinistro di non è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 1.10.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 1.10.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 1.10.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 1.10.2.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 1.10.3
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Vero
Falso
Vero
Passaggio 1.11
La soluzione è costituita da tutti gli intervalli veri.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 2
L'intervallo della secante è e . Poiché non rientra nell'intervallo, non esiste soluzione.
Nessuna soluzione
Passaggio 3
Traccia ogni grafico sul medesimo sistema di coordinate.
Passaggio 4