Algebra Esempi

Trovare Tutte Le Soluzioni Complesse radice quadrata di 3tan(x)cot(x)+ radice quadrata di 3tan(x)-cot(x)-1=0
Passaggio 1
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.1
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 1.1.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 1.1.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 1.2
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Imposta uguale a .
Passaggio 3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2.2
Trova il valore dell'incognita corrispondente all'inverso della cotangente presente nell'equazione assegnata.
Passaggio 3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.2.3.1
Il valore esatto di è .
Passaggio 3.2.4
La funzione cotangente è negativa nel secondo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 3.2.5
Semplifica l'espressione per trovare la seconda soluzione.
Tocca per altri passaggi...
Passaggio 3.2.5.1
Somma a .
Passaggio 3.2.5.2
L'angolo risultante di è positivo e coterminale con .
Passaggio 3.2.6
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 3.2.6.1
Si può calcolare il periodo della funzione usando .
Passaggio 3.2.6.2
Sostituisci con nella formula per il periodo.
Passaggio 3.2.6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 3.2.6.4
Dividi per .
Passaggio 3.2.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 4.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Dividi per ciascun termine in .
Passaggio 4.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 4.2.2.2.1.2
Dividi per .
Passaggio 4.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.2.2.3.1
Moltiplica per .
Passaggio 4.2.2.3.2
Combina e semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 4.2.2.3.2.1
Moltiplica per .
Passaggio 4.2.2.3.2.2
Eleva alla potenza di .
Passaggio 4.2.2.3.2.3
Eleva alla potenza di .
Passaggio 4.2.2.3.2.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.2.2.3.2.5
Somma e .
Passaggio 4.2.2.3.2.6
Riscrivi come .
Tocca per altri passaggi...
Passaggio 4.2.2.3.2.6.1
Usa per riscrivere come .
Passaggio 4.2.2.3.2.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.2.2.3.2.6.3
e .
Passaggio 4.2.2.3.2.6.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.2.2.3.2.6.4.1
Elimina il fattore comune.
Passaggio 4.2.2.3.2.6.4.2
Riscrivi l'espressione.
Passaggio 4.2.2.3.2.6.5
Calcola l'esponente.
Passaggio 4.2.3
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 4.2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.2.4.1
Il valore esatto di è .
Passaggio 4.2.5
La funzione tangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, aggiungi l'angolo di riferimento da per determinare la soluzione nel quarto quadrante.
Passaggio 4.2.6
Semplifica .
Tocca per altri passaggi...
Passaggio 4.2.6.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 4.2.6.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 4.2.6.2.1
e .
Passaggio 4.2.6.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 4.2.6.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.2.6.3.1
Sposta alla sinistra di .
Passaggio 4.2.6.3.2
Somma e .
Passaggio 4.2.7
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 4.2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 4.2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 4.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 4.2.7.4
Dividi per .
Passaggio 4.2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 5
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero