Algebra Esempi

求解x x^3+2x-1=2
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Sottrai da .
Passaggio 3
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 3.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 3.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 3.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 3.3.1
Sostituisci nel polinomio.
Passaggio 3.3.2
Eleva alla potenza di .
Passaggio 3.3.3
Moltiplica per .
Passaggio 3.3.4
Somma e .
Passaggio 3.3.5
Sottrai da .
Passaggio 3.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 3.5
Dividi per .
Tocca per altri passaggi...
Passaggio 3.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-++-
Passaggio 3.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-++-
Passaggio 3.5.3
Moltiplica il nuovo quoziente per il divisore.
-++-
+-
Passaggio 3.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-++-
-+
Passaggio 3.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-++-
-+
+
Passaggio 3.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-++-
-+
++
Passaggio 3.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
-++-
-+
++
Passaggio 3.5.8
Moltiplica il nuovo quoziente per il divisore.
+
-++-
-+
++
+-
Passaggio 3.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
-++-
-+
++
-+
Passaggio 3.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
-++-
-+
++
-+
+
Passaggio 3.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
-++-
-+
++
-+
+-
Passaggio 3.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++
-++-
-+
++
-+
+-
Passaggio 3.5.13
Moltiplica il nuovo quoziente per il divisore.
++
-++-
-+
++
-+
+-
+-
Passaggio 3.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++
-++-
-+
++
-+
+-
-+
Passaggio 3.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++
-++-
-+
++
-+
+-
-+
Passaggio 3.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 3.6
Scrivi come insieme di fattori.
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Somma a entrambi i lati dell'equazione.
Passaggio 6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.2.1
Usa la formula quadratica per trovare le soluzioni.
Passaggio 6.2.2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 6.2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 6.2.3.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.2.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 6.2.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 6.2.3.1.2.1
Moltiplica per .
Passaggio 6.2.3.1.2.2
Moltiplica per .
Passaggio 6.2.3.1.3
Sottrai da .
Passaggio 6.2.3.1.4
Riscrivi come .
Passaggio 6.2.3.1.5
Riscrivi come .
Passaggio 6.2.3.1.6
Riscrivi come .
Passaggio 6.2.3.2
Moltiplica per .
Passaggio 6.2.4
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.