Algebra Esempi

求解x 2x(x-4)-3(x+5)=x(1-x)-16
Passaggio 1
Semplifica .
Tocca per altri passaggi...
Passaggio 1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.1
Applica la proprietà distributiva.
Passaggio 1.1.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Sposta .
Passaggio 1.1.2.2
Moltiplica per .
Passaggio 1.1.3
Moltiplica per .
Passaggio 1.1.4
Applica la proprietà distributiva.
Passaggio 1.1.5
Moltiplica per .
Passaggio 1.2
Sottrai da .
Passaggio 2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.1
Applica la proprietà distributiva.
Passaggio 2.2
Moltiplica per .
Passaggio 2.3
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 2.4
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.4.1
Sposta .
Passaggio 2.4.2
Moltiplica per .
Passaggio 3
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.3
Somma e .
Passaggio 3.4
Sottrai da .
Passaggio 4
Sposta tutti i termini sul lato sinistro dell'equazione e semplifica.
Tocca per altri passaggi...
Passaggio 4.1
Somma a entrambi i lati dell'equazione.
Passaggio 4.2
Somma e .
Passaggio 5
Usa la formula quadratica per trovare le soluzioni.
Passaggio 6
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 7
Semplifica.
Tocca per altri passaggi...
Passaggio 7.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 7.1.1
Eleva alla potenza di .
Passaggio 7.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 7.1.2.1
Moltiplica per .
Passaggio 7.1.2.2
Moltiplica per .
Passaggio 7.1.3
Sottrai da .
Passaggio 7.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 7.1.4.1
Scomponi da .
Passaggio 7.1.4.2
Riscrivi come .
Passaggio 7.1.5
Estrai i termini dal radicale.
Passaggio 7.2
Moltiplica per .
Passaggio 7.3
Semplifica .
Passaggio 8
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 9
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale: