Algebra Esempi

Trovare i Valori Esclusi ((x^2+10x+25)/(x-5))÷((x^2-25)/(5x+10))
Passaggio 1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2
Somma a entrambi i lati dell'equazione.
Passaggio 3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.2.1
Dividi per ciascun termine in .
Passaggio 4.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.2.2.1.1
Elimina il fattore comune.
Passaggio 4.2.2.1.2
Dividi per .
Passaggio 4.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.2.3.1
Dividi per .
Passaggio 5
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Poni il numeratore uguale a zero.
Passaggio 6.2
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 6.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.2.2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 6.2.3
Semplifica .
Tocca per altri passaggi...
Passaggio 6.2.3.1
Riscrivi come .
Passaggio 6.2.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 6.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 6.2.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 6.2.4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 6.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 7
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 8