Algebra Esempi

Fattore f(x)=64x^3-240x^2+300x-125
Passaggio 1
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 1.3.1
Sostituisci nel polinomio.
Passaggio 1.3.2
Eleva alla potenza di .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.3.4
Eleva alla potenza di .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.3.6
Sottrai da .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Somma e .
Passaggio 1.3.9
Sottrai da .
Passaggio 1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 1.5
Dividi per .
Tocca per altri passaggi...
Passaggio 1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
--+-
Passaggio 1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
--+-
Passaggio 1.5.3
Moltiplica il nuovo quoziente per il divisore.
--+-
+-
Passaggio 1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
--+-
-+
Passaggio 1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
--+-
-+
-
Passaggio 1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
--+-
-+
-+
Passaggio 1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-
--+-
-+
-+
Passaggio 1.5.8
Moltiplica il nuovo quoziente per il divisore.
-
--+-
-+
-+
-+
Passaggio 1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-
--+-
-+
-+
+-
Passaggio 1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-
--+-
-+
-+
+-
+
Passaggio 1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-
--+-
-+
-+
+-
+-
Passaggio 1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+
--+-
-+
-+
+-
+-
Passaggio 1.5.13
Moltiplica il nuovo quoziente per il divisore.
-+
--+-
-+
-+
+-
+-
+-
Passaggio 1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+
--+-
-+
-+
+-
+-
-+
Passaggio 1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+
--+-
-+
-+
+-
+-
-+
Passaggio 1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 1.6
Scrivi come insieme di fattori.
Passaggio 2
Scomponi usando la regola del quadrato perfetto.
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi come .
Passaggio 2.2
Riscrivi come .
Passaggio 2.3
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 2.4
Riscrivi il polinomio.
Passaggio 2.5
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 3
Combina i fattori comuni.
Tocca per altri passaggi...
Passaggio 3.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.2
Somma e .