Trigonometria Esempi
cos(8x)cos(8x)
Passaggio 1
Per espandere cos(8x)cos(8x) un buon metodo è la formula di de Moivre (r(cos(x)+i⋅sin(x))n=rn(cos(nx)+i⋅sin(nx)))(r(cos(x)+i⋅sin(x))n=rn(cos(nx)+i⋅sin(nx))). Quando r=1r=1, cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n.
cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n
Passaggio 2
Espandi il lato destro di cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n usando il teorema binomiale.
Espandi: (cos(x)+i⋅sin(x))8(cos(x)+i⋅sin(x))8
Passaggio 3
Usa il teorema binomiale.
cos8(x)+8cos7(x)(isin(x))+28cos6(x)(isin(x))2+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)(isin(x))+28cos6(x)(isin(x))2+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4
Passaggio 4.1
Semplifica ciascun termine.
Passaggio 4.1.1
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)+28cos6(x)(i2sin2(x))+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)+28cos6(x)(i2sin2(x))+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.2
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)+28⋅i2cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)+28⋅i2cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.3
Riscrivi i2i2 come -1−1.
cos8(x)+8cos7(x)isin(x)+28⋅-1cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)+28⋅−1cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.4
Moltiplica 2828 per -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.5
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56cos5(x)(i3sin3(x))+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)+56cos5(x)(i3sin3(x))+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.6
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56⋅i3cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)+56⋅i3cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.7
Metti in evidenza i2i2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56⋅(i2⋅i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)+56⋅(i2⋅i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.8
Riscrivi i2i2 come -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56⋅(-1⋅i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)+56⋅(−1⋅i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.9
Riscrivi -1i−1i come -i−i.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56⋅(-i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)+56⋅(−i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.10
Moltiplica -1−1 per 5656.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.11
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)(i4sin4(x))+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)(i4sin4(x))+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.12
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70⋅i4cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70⋅i4cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.13
Riscrivi i4i4 come 11.
Passaggio 4.1.13.1
Riscrivi i4i4 come (i2)2(i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70⋅(i2)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70⋅(i2)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.13.2
Riscrivi i2i2 come -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70⋅(-1)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70⋅(−1)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.13.3
Eleva -1−1 alla potenza di 22.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70⋅1cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70⋅1cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70⋅1cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70⋅1cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.14
Moltiplica 7070 per 11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.15
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(i5sin5(x))+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(i5sin5(x))+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.16
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅i5cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅i5cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.17
Metti in evidenza i4i4.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅(i4i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅(i4i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.18
Riscrivi i4i4 come 11.
Passaggio 4.1.18.1
Riscrivi i4i4 come (i2)2(i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅((i2)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅((i2)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.18.2
Riscrivi i2i2 come -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅((-1)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅((−1)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.18.3
Eleva -1−1 alla potenza di 22.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.19
Moltiplica ii per 11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅icos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56⋅icos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.20
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28cos2(x)(i6sin6(x))+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28cos2(x)(i6sin6(x))+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.21
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅i6cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅i6cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.22
Metti in evidenza i4i4.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅(i4i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅(i4i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.23
Riscrivi i4i4 come 11.
Passaggio 4.1.23.1
Riscrivi i4i4 come (i2)2(i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅((i2)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅((i2)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.23.2
Riscrivi i2i2 come -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅((-1)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅((−1)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.23.3
Eleva -1−1 alla potenza di 22.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.24
Moltiplica i2i2 per 11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅i2cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅i2cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.25
Riscrivi i2i2 come -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅-1cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28⋅−1cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.26
Moltiplica 2828 per -1−1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)−28cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.27
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i7sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)−28cos2(x)sin6(x)+8cos(x)(i7sin7(x))+(isin(x))8
Passaggio 4.1.28
Riscrivi i7i7 come i4(i2⋅i)i4(i2⋅i).
Passaggio 4.1.28.1
Metti in evidenza i4i4.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i4i3sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)−28cos2(x)sin6(x)+8cos(x)(i4i3sin7(x))+(isin(x))8
Passaggio 4.1.28.2
Metti in evidenza i2i2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i4(i2⋅i)sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)−28cos2(x)sin6(x)+8cos(x)(i4(i2⋅i)sin7(x))+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i4(i2⋅i)sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)−28cos6(x)sin2(x)−56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)−28cos2(x)sin6(x)+8cos(x)(i4(i2⋅i)sin7(x))+(isin(x))8
Passaggio 4.1.29
Riscrivi i4 come 1.
Passaggio 4.1.29.1
Riscrivi i4 come (i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)((i2)2(i2⋅i)sin7(x))+(isin(x))8
Passaggio 4.1.29.2
Riscrivi i2 come -1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)((-1)2(i2⋅i)sin7(x))+(isin(x))8
Passaggio 4.1.29.3
Eleva -1 alla potenza di 2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(1(i2⋅i)sin7(x))+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(1(i2⋅i)sin7(x))+(isin(x))8
Passaggio 4.1.30
Moltiplica i2⋅i per 1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i2⋅isin7(x))+(isin(x))8
Passaggio 4.1.31
Riscrivi i2 come -1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(-1⋅isin7(x))+(isin(x))8
Passaggio 4.1.32
Riscrivi -1i come -i.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(-isin7(x))+(isin(x))8
Passaggio 4.1.33
Moltiplica -1 per 8.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)(isin7(x))+(isin(x))8
Passaggio 4.1.34
Applica la regola del prodotto a isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+i8sin8(x)
Passaggio 4.1.35
Riscrivi i8 come (i4)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+(i4)2sin8(x)
Passaggio 4.1.36
Riscrivi i4 come 1.
Passaggio 4.1.36.1
Riscrivi i4 come (i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+((i2)2)2sin8(x)
Passaggio 4.1.36.2
Riscrivi i2 come -1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+((-1)2)2sin8(x)
Passaggio 4.1.36.3
Eleva -1 alla potenza di 2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+12sin8(x)
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+12sin8(x)
Passaggio 4.1.37
Uno elevato a qualsiasi potenza è uno.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+1sin8(x)
Passaggio 4.1.38
Moltiplica sin8(x) per 1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+sin8(x)
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+sin8(x)
Passaggio 4.2
Riordina i fattori in cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+sin8(x).
cos8(x)+8icos7(x)sin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8icos(x)sin7(x)+sin8(x)
cos8(x)+8icos7(x)sin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8icos(x)sin7(x)+sin8(x)
Passaggio 5
Estrai le espressioni con la parte immaginaria, che sono uguali a cos(8x). Rimuovi il numero immaginario i.
cos(8x)=cos8(x)-28cos6(x)sin2(x)+70cos4(x)sin4(x)-28cos2(x)sin6(x)+sin8(x)