Trigonometria Esempi

cos(8x)cos(8x)
Passaggio 1
Per espandere cos(8x)cos(8x) un buon metodo è la formula di de Moivre (r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx)))(r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx))). Quando r=1r=1, cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n.
cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n
Passaggio 2
Espandi il lato destro di cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n usando il teorema binomiale.
Espandi: (cos(x)+isin(x))8(cos(x)+isin(x))8
Passaggio 3
Usa il teorema binomiale.
cos8(x)+8cos7(x)(isin(x))+28cos6(x)(isin(x))2+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)(isin(x))+28cos6(x)(isin(x))2+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.1
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)+28cos6(x)(i2sin2(x))+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)+28cos6(x)(i2sin2(x))+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.2
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)+28i2cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)+28i2cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.3
Riscrivi i2i2 come -11.
cos8(x)+8cos7(x)isin(x)+28-1cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)+281cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.4
Moltiplica 2828 per -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)+56cos5(x)(isin(x))3+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.5
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56cos5(x)(i3sin3(x))+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)+56cos5(x)(i3sin3(x))+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.6
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56i3cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)+56i3cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.7
Metti in evidenza i2i2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56(i2i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)+56(i2i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.8
Riscrivi i2i2 come -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56(-1i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)+56(1i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.9
Riscrivi -1i1i come -ii.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)+56(-i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)+56(i)cos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.10
Moltiplica -11 per 5656.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)(isin(x))4+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.11
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)(i4sin4(x))+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)(i4sin4(x))+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.12
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70i4cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70i4cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.13
Riscrivi i4i4 come 11.
Tocca per altri passaggi...
Passaggio 4.1.13.1
Riscrivi i4i4 come (i2)2(i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70(i2)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70(i2)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.13.2
Riscrivi i2i2 come -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70(-1)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70(1)2cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.13.3
Eleva -11 alla potenza di 22.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+701cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+701cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+701cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+701cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.14
Moltiplica 7070 per 11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(isin(x))5+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.15
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(i5sin5(x))+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56cos3(x)(i5sin5(x))+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.16
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56i5cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56i5cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.17
Metti in evidenza i4i4.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56(i4i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56(i4i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.18
Riscrivi i4i4 come 11.
Tocca per altri passaggi...
Passaggio 4.1.18.1
Riscrivi i4i4 come (i2)2(i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56((i2)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56((i2)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.18.2
Riscrivi i2i2 come -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56((-1)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56((1)2i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.18.3
Eleva -11 alla potenza di 22.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56(1i)cos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.19
Moltiplica ii per 11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28cos2(x)(isin(x))6+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.20
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28cos2(x)(i6sin6(x))+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28cos2(x)(i6sin6(x))+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.21
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28i6cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28i6cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.22
Metti in evidenza i4i4.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28(i4i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28(i4i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.23
Riscrivi i4i4 come 11.
Tocca per altri passaggi...
Passaggio 4.1.23.1
Riscrivi i4i4 come (i2)2(i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28((i2)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28((i2)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.23.2
Riscrivi i2i2 come -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28((-1)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28((1)2i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.23.3
Eleva -11 alla potenza di 22.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28(1i2)cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.24
Moltiplica i2i2 per 11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28i2cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28i2cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.25
Riscrivi i2i2 come -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+28-1cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)+281cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.26
Moltiplica 2828 per -11.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)28cos2(x)sin6(x)+8cos(x)(isin(x))7+(isin(x))8
Passaggio 4.1.27
Applica la regola del prodotto a isin(x)isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i7sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)28cos2(x)sin6(x)+8cos(x)(i7sin7(x))+(isin(x))8
Passaggio 4.1.28
Riscrivi i7i7 come i4(i2i)i4(i2i).
Tocca per altri passaggi...
Passaggio 4.1.28.1
Metti in evidenza i4i4.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i4i3sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)28cos2(x)sin6(x)+8cos(x)(i4i3sin7(x))+(isin(x))8
Passaggio 4.1.28.2
Metti in evidenza i2i2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i4(i2i)sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)28cos2(x)sin6(x)+8cos(x)(i4(i2i)sin7(x))+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i4(i2i)sin7(x))+(isin(x))8cos8(x)+8cos7(x)isin(x)28cos6(x)sin2(x)56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)28cos2(x)sin6(x)+8cos(x)(i4(i2i)sin7(x))+(isin(x))8
Passaggio 4.1.29
Riscrivi i4 come 1.
Tocca per altri passaggi...
Passaggio 4.1.29.1
Riscrivi i4 come (i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)((i2)2(i2i)sin7(x))+(isin(x))8
Passaggio 4.1.29.2
Riscrivi i2 come -1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)((-1)2(i2i)sin7(x))+(isin(x))8
Passaggio 4.1.29.3
Eleva -1 alla potenza di 2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(1(i2i)sin7(x))+(isin(x))8
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(1(i2i)sin7(x))+(isin(x))8
Passaggio 4.1.30
Moltiplica i2i per 1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(i2isin7(x))+(isin(x))8
Passaggio 4.1.31
Riscrivi i2 come -1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(-1isin7(x))+(isin(x))8
Passaggio 4.1.32
Riscrivi -1i come -i.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)+8cos(x)(-isin7(x))+(isin(x))8
Passaggio 4.1.33
Moltiplica -1 per 8.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)(isin7(x))+(isin(x))8
Passaggio 4.1.34
Applica la regola del prodotto a isin(x).
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+i8sin8(x)
Passaggio 4.1.35
Riscrivi i8 come (i4)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+(i4)2sin8(x)
Passaggio 4.1.36
Riscrivi i4 come 1.
Tocca per altri passaggi...
Passaggio 4.1.36.1
Riscrivi i4 come (i2)2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+((i2)2)2sin8(x)
Passaggio 4.1.36.2
Riscrivi i2 come -1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+((-1)2)2sin8(x)
Passaggio 4.1.36.3
Eleva -1 alla potenza di 2.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+12sin8(x)
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+12sin8(x)
Passaggio 4.1.37
Uno elevato a qualsiasi potenza è uno.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+1sin8(x)
Passaggio 4.1.38
Moltiplica sin8(x) per 1.
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+sin8(x)
cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+sin8(x)
Passaggio 4.2
Riordina i fattori in cos8(x)+8cos7(x)isin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8cos(x)isin7(x)+sin8(x).
cos8(x)+8icos7(x)sin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8icos(x)sin7(x)+sin8(x)
cos8(x)+8icos7(x)sin(x)-28cos6(x)sin2(x)-56icos5(x)sin3(x)+70cos4(x)sin4(x)+56icos3(x)sin5(x)-28cos2(x)sin6(x)-8icos(x)sin7(x)+sin8(x)
Passaggio 5
Estrai le espressioni con la parte immaginaria, che sono uguali a cos(8x). Rimuovi il numero immaginario i.
cos(8x)=cos8(x)-28cos6(x)sin2(x)+70cos4(x)sin4(x)-28cos2(x)sin6(x)+sin8(x)
Inserisci il TUO problema
Mathway richiede javascript e un browser aggiornato.
 [x2  12  π  xdx ] 
AmazonPay