Esempi
Passaggio 1
Passaggio 1.1
La discriminante di una quadratica è l'espressione dentro il radicale della formula quadratica.
Passaggio 1.2
Sostituisci i valori di , e .
Passaggio 1.3
Calcola il risultato per trovare il discriminante.
Passaggio 1.3.1
Semplifica ciascun termine.
Passaggio 1.3.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.3.1.2
Moltiplica .
Passaggio 1.3.1.2.1
Moltiplica per .
Passaggio 1.3.1.2.2
Moltiplica per .
Passaggio 1.3.2
Somma e .
Passaggio 2
Un quadrato perfetto è un numero intero che corrisponde al quadrato di un altro numero intero. , che è un numero intero.
Passaggio 3
Poiché è il quadrato di , è un numero quadrato perfetto.
è un quadrato perfetto
Passaggio 4
Il polinomio non è primo perché il discriminante è un numero quadrato perfetto.
Non è primo