Esempi
[1123021421232110]⎡⎢
⎢
⎢
⎢⎣1123021421232110⎤⎥
⎥
⎥
⎥⎦
Passaggio 1
Passaggio 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Passaggio 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Passaggio 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|214123110|∣∣
∣∣214123110∣∣
∣∣
Passaggio 1.4
Multiply element a11a11 by its cofactor.
1|214123110|1∣∣
∣∣214123110∣∣
∣∣
Passaggio 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|123123110|∣∣
∣∣123123110∣∣
∣∣
Passaggio 1.6
Multiply element a21a21 by its cofactor.
0|123123110|0∣∣
∣∣123123110∣∣
∣∣
Passaggio 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|123214110|∣∣
∣∣123214110∣∣
∣∣
Passaggio 1.8
Multiply element a31a31 by its cofactor.
2|123214110|2∣∣
∣∣123214110∣∣
∣∣
Passaggio 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|123214123|∣∣
∣∣123214123∣∣
∣∣
Passaggio 1.10
Multiply element a41a41 by its cofactor.
-2|123214123|−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 1.11
Add the terms together.
1|214123110|+0|123123110|+2|123214110|-2|123214123|1∣∣
∣∣214123110∣∣
∣∣+0∣∣
∣∣123123110∣∣
∣∣+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1|214123110|+0|123123110|+2|123214110|-2|123214123|1∣∣
∣∣214123110∣∣
∣∣+0∣∣
∣∣123123110∣∣
∣∣+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 2
Moltiplica 00 per |123123110|∣∣
∣∣123123110∣∣
∣∣.
1|214123110|+0+2|123214110|-2|123214123|1∣∣
∣∣214123110∣∣
∣∣+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3
Passaggio 3.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
Passaggio 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Passaggio 3.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Passaggio 3.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|1423|∣∣∣1423∣∣∣
Passaggio 3.1.4
Multiply element a31a31 by its cofactor.
1|1423|1∣∣∣1423∣∣∣
Passaggio 3.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|2413|∣∣∣2413∣∣∣
Passaggio 3.1.6
Multiply element a32a32 by its cofactor.
-1|2413|−1∣∣∣2413∣∣∣
Passaggio 3.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|2112|∣∣∣2112∣∣∣
Passaggio 3.1.8
Multiply element a33a33 by its cofactor.
0|2112|0∣∣∣2112∣∣∣
Passaggio 3.1.9
Add the terms together.
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|1(1∣∣∣1423∣∣∣−1∣∣∣2413∣∣∣+0∣∣∣2112∣∣∣)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|1(1∣∣∣1423∣∣∣−1∣∣∣2413∣∣∣+0∣∣∣2112∣∣∣)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.2
Moltiplica 00 per |2112|∣∣∣2112∣∣∣.
1(1|1423|-1|2413|+0)+0+2|123214110|-2|123214123|1(1∣∣∣1423∣∣∣−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.3
Calcola |1423|∣∣∣1423∣∣∣.
Passaggio 3.3.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(1(1⋅3-2⋅4)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(1⋅3−2⋅4)−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.3.2
Semplifica il determinante.
Passaggio 3.3.2.1
Semplifica ciascun termine.
Passaggio 3.3.2.1.1
Moltiplica 33 per 11.
1(1(3-2⋅4)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(3−2⋅4)−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.3.2.1.2
Moltiplica -2−2 per 44.
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(3−8)−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|1(1(3−8)−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.3.2.2
Sottrai 88 da 33.
1(1⋅-5-1|2413|+0)+0+2|123214110|-2|123214123|1(1⋅−5−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1⋅-5-1|2413|+0)+0+2|123214110|-2|123214123|1(1⋅−5−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1⋅-5-1|2413|+0)+0+2|123214110|-2|123214123|1(1⋅−5−1∣∣∣2413∣∣∣+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.4
Calcola |2413|∣∣∣2413∣∣∣.
Passaggio 3.4.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(1⋅-5-1(2⋅3-1⋅4)+0)+0+2|123214110|-2|123214123|1(1⋅−5−1(2⋅3−1⋅4)+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.4.2
Semplifica il determinante.
Passaggio 3.4.2.1
Semplifica ciascun termine.
Passaggio 3.4.2.1.1
Moltiplica 22 per 33.
1(1⋅-5-1(6-1⋅4)+0)+0+2|123214110|-2|123214123|1(1⋅−5−1(6−1⋅4)+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.4.2.1.2
Moltiplica -1−1 per 44.
1(1⋅-5-1(6-4)+0)+0+2|123214110|-2|123214123|1(1⋅−5−1(6−4)+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1⋅-5-1(6-4)+0)+0+2|123214110|-2|123214123|1(1⋅−5−1(6−4)+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.4.2.2
Sottrai 44 da 66.
1(1⋅-5-1⋅2+0)+0+2|123214110|-2|123214123|1(1⋅−5−1⋅2+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1⋅-5-1⋅2+0)+0+2|123214110|-2|123214123|1(1⋅−5−1⋅2+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(1⋅-5-1⋅2+0)+0+2|123214110|-2|123214123|1(1⋅−5−1⋅2+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.5
Semplifica il determinante.
Passaggio 3.5.1
Semplifica ciascun termine.
Passaggio 3.5.1.1
Moltiplica -5−5 per 11.
1(-5-1⋅2+0)+0+2|123214110|-2|123214123|1(−5−1⋅2+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.5.1.2
Moltiplica -1−1 per 22.
1(-5-2+0)+0+2|123214110|-2|123214123|1(−5−2+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1(-5-2+0)+0+2|123214110|-2|123214123|1(−5−2+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.5.2
Sottrai 22 da -5−5.
1(-7+0)+0+2|123214110|-2|123214123|1(−7+0)+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 3.5.3
Somma -7−7 e 00.
1⋅-7+0+2|123214110|-2|123214123|1⋅−7+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2|123214110|-2|123214123|1⋅−7+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2|123214110|-2|123214123|1⋅−7+0+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4
Passaggio 4.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
Passaggio 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Passaggio 4.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Passaggio 4.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|2314|∣∣∣2314∣∣∣
Passaggio 4.1.4
Multiply element a31a31 by its cofactor.
1|2314|1∣∣∣2314∣∣∣
Passaggio 4.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|1324|∣∣∣1324∣∣∣
Passaggio 4.1.6
Multiply element a32a32 by its cofactor.
-1|1324|−1∣∣∣1324∣∣∣
Passaggio 4.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|1221|∣∣∣1221∣∣∣
Passaggio 4.1.8
Multiply element a33a33 by its cofactor.
0|1221|0∣∣∣1221∣∣∣
Passaggio 4.1.9
Add the terms together.
1⋅-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|1⋅−7+0+2(1∣∣∣2314∣∣∣−1∣∣∣1324∣∣∣+0∣∣∣1221∣∣∣)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|1⋅−7+0+2(1∣∣∣2314∣∣∣−1∣∣∣1324∣∣∣+0∣∣∣1221∣∣∣)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.2
Moltiplica 00 per |1221|∣∣∣1221∣∣∣.
1⋅-7+0+2(1|2314|-1|1324|+0)-2|123214123|1⋅−7+0+2(1∣∣∣2314∣∣∣−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.3
Calcola |2314|∣∣∣2314∣∣∣.
Passaggio 4.3.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-7+0+2(1(2⋅4-1⋅3)-1|1324|+0)-2|123214123|1⋅−7+0+2(1(2⋅4−1⋅3)−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.3.2
Semplifica il determinante.
Passaggio 4.3.2.1
Semplifica ciascun termine.
Passaggio 4.3.2.1.1
Moltiplica 22 per 44.
1⋅-7+0+2(1(8-1⋅3)-1|1324|+0)-2|123214123|1⋅−7+0+2(1(8−1⋅3)−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.3.2.1.2
Moltiplica -1−1 per 33.
1⋅-7+0+2(1(8-3)-1|1324|+0)-2|123214123|1⋅−7+0+2(1(8−3)−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1(8-3)-1|1324|+0)-2|123214123|1⋅−7+0+2(1(8−3)−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.3.2.2
Sottrai 33 da 88.
1⋅-7+0+2(1⋅5-1|1324|+0)-2|123214123|1⋅−7+0+2(1⋅5−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1⋅5-1|1324|+0)-2|123214123|1⋅−7+0+2(1⋅5−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1⋅5-1|1324|+0)-2|123214123|1⋅−7+0+2(1⋅5−1∣∣∣1324∣∣∣+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.4
Calcola |1324|∣∣∣1324∣∣∣.
Passaggio 4.4.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-7+0+2(1⋅5-1(1⋅4-2⋅3)+0)-2|123214123|1⋅−7+0+2(1⋅5−1(1⋅4−2⋅3)+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.4.2
Semplifica il determinante.
Passaggio 4.4.2.1
Semplifica ciascun termine.
Passaggio 4.4.2.1.1
Moltiplica 44 per 11.
1⋅-7+0+2(1⋅5-1(4-2⋅3)+0)-2|123214123|1⋅−7+0+2(1⋅5−1(4−2⋅3)+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.4.2.1.2
Moltiplica -2−2 per 33.
1⋅-7+0+2(1⋅5-1(4-6)+0)-2|123214123|1⋅−7+0+2(1⋅5−1(4−6)+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1⋅5-1(4-6)+0)-2|123214123|1⋅−7+0+2(1⋅5−1(4−6)+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.4.2.2
Sottrai 66 da 44.
1⋅-7+0+2(1⋅5-1⋅-2+0)-2|123214123|1⋅−7+0+2(1⋅5−1⋅−2+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1⋅5-1⋅-2+0)-2|123214123|1⋅−7+0+2(1⋅5−1⋅−2+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(1⋅5-1⋅-2+0)-2|123214123|1⋅−7+0+2(1⋅5−1⋅−2+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.5
Semplifica il determinante.
Passaggio 4.5.1
Semplifica ciascun termine.
Passaggio 4.5.1.1
Moltiplica 55 per 11.
1⋅-7+0+2(5-1⋅-2+0)-2|123214123|1⋅−7+0+2(5−1⋅−2+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.5.1.2
Moltiplica -1−1 per -2−2.
1⋅-7+0+2(5+2+0)-2|123214123|1⋅−7+0+2(5+2+0)−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2(5+2+0)-2|123214123|1⋅−7+0+2(5+2+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.5.2
Somma 55 e 22.
1⋅-7+0+2(7+0)-2|123214123|1⋅−7+0+2(7+0)−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 4.5.3
Somma 77 e 00.
1⋅-7+0+2⋅7-2|123214123|1⋅−7+0+2⋅7−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2⋅7-2|123214123|1⋅−7+0+2⋅7−2∣∣
∣∣123214123∣∣
∣∣
1⋅-7+0+2⋅7-2|123214123|1⋅−7+0+2⋅7−2∣∣
∣∣123214123∣∣
∣∣
Passaggio 5
Passaggio 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Passaggio 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Passaggio 5.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Passaggio 5.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1423|∣∣∣1423∣∣∣
Passaggio 5.1.4
Multiply element a11a11 by its cofactor.
1|1423|1∣∣∣1423∣∣∣
Passaggio 5.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2413|∣∣∣2413∣∣∣
Passaggio 5.1.6
Multiply element a12a12 by its cofactor.
-2|2413|−2∣∣∣2413∣∣∣
Passaggio 5.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2112|∣∣∣2112∣∣∣
Passaggio 5.1.8
Multiply element a13a13 by its cofactor.
3|2112|3∣∣∣2112∣∣∣
Passaggio 5.1.9
Add the terms together.
1⋅-7+0+2⋅7-2(1|1423|-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1∣∣∣1423∣∣∣−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1|1423|-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1∣∣∣1423∣∣∣−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
Passaggio 5.2
Calcola |1423|∣∣∣1423∣∣∣.
Passaggio 5.2.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-7+0+2⋅7-2(1(1⋅3-2⋅4)-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1(1⋅3−2⋅4)−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
Passaggio 5.2.2
Semplifica il determinante.
Passaggio 5.2.2.1
Semplifica ciascun termine.
Passaggio 5.2.2.1.1
Moltiplica 33 per 11.
1⋅-7+0+2⋅7-2(1(3-2⋅4)-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1(3−2⋅4)−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
Passaggio 5.2.2.1.2
Moltiplica -2−2 per 44.
1⋅-7+0+2⋅7-2(1(3-8)-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1(3−8)−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1(3-8)-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1(3−8)−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
Passaggio 5.2.2.2
Sottrai 88 da 33.
1⋅-7+0+2⋅7-2(1⋅-5-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1⋅-5-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1⋅-5-2|2413|+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2∣∣∣2413∣∣∣+3∣∣∣2112∣∣∣)
Passaggio 5.3
Calcola |2413|∣∣∣2413∣∣∣.
Passaggio 5.3.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-7+0+2⋅7-2(1⋅-5-2(2⋅3-1⋅4)+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2(2⋅3−1⋅4)+3∣∣∣2112∣∣∣)
Passaggio 5.3.2
Semplifica il determinante.
Passaggio 5.3.2.1
Semplifica ciascun termine.
Passaggio 5.3.2.1.1
Moltiplica 22 per 33.
1⋅-7+0+2⋅7-2(1⋅-5-2(6-1⋅4)+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2(6−1⋅4)+3∣∣∣2112∣∣∣)
Passaggio 5.3.2.1.2
Moltiplica -1−1 per 44.
1⋅-7+0+2⋅7-2(1⋅-5-2(6-4)+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2(6−4)+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1⋅-5-2(6-4)+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2(6−4)+3∣∣∣2112∣∣∣)
Passaggio 5.3.2.2
Sottrai 44 da 66.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3∣∣∣2112∣∣∣)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3|2112|)1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3∣∣∣2112∣∣∣)
Passaggio 5.4
Calcola |2112|∣∣∣2112∣∣∣.
Passaggio 5.4.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(2⋅2-1⋅1))1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3(2⋅2−1⋅1))
Passaggio 5.4.2
Semplifica il determinante.
Passaggio 5.4.2.1
Semplifica ciascun termine.
Passaggio 5.4.2.1.1
Moltiplica 22 per 22.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(4-1⋅1))1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3(4−1⋅1))
Passaggio 5.4.2.1.2
Moltiplica -1−1 per 11.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(4-1))1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3(4−1))
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(4-1))1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3(4−1))
Passaggio 5.4.2.2
Sottrai 11 da 44.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3⋅3)1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3⋅3)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3⋅3)1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3⋅3)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3⋅3)1⋅−7+0+2⋅7−2(1⋅−5−2⋅2+3⋅3)
Passaggio 5.5
Semplifica il determinante.
Passaggio 5.5.1
Semplifica ciascun termine.
Passaggio 5.5.1.1
Moltiplica -5−5 per 11.
1⋅-7+0+2⋅7-2(-5-2⋅2+3⋅3)1⋅−7+0+2⋅7−2(−5−2⋅2+3⋅3)
Passaggio 5.5.1.2
Moltiplica -2−2 per 22.
1⋅-7+0+2⋅7-2(-5-4+3⋅3)1⋅−7+0+2⋅7−2(−5−4+3⋅3)
Passaggio 5.5.1.3
Moltiplica 33 per 33.
1⋅-7+0+2⋅7-2(-5-4+9)1⋅−7+0+2⋅7−2(−5−4+9)
1⋅-7+0+2⋅7-2(-5-4+9)1⋅−7+0+2⋅7−2(−5−4+9)
Passaggio 5.5.2
Sottrai 44 da -5−5.
1⋅-7+0+2⋅7-2(-9+9)1⋅−7+0+2⋅7−2(−9+9)
Passaggio 5.5.3
Somma -9−9 e 99.
1⋅-7+0+2⋅7-2⋅01⋅−7+0+2⋅7−2⋅0
1⋅-7+0+2⋅7-2⋅01⋅−7+0+2⋅7−2⋅0
1⋅-7+0+2⋅7-2⋅01⋅−7+0+2⋅7−2⋅0
Passaggio 6
Passaggio 6.1
Semplifica ciascun termine.
Passaggio 6.1.1
Moltiplica -7−7 per 11.
-7+0+2⋅7-2⋅0−7+0+2⋅7−2⋅0
Passaggio 6.1.2
Moltiplica 22 per 77.
-7+0+14-2⋅0−7+0+14−2⋅0
Passaggio 6.1.3
Moltiplica -2−2 per 00.
-7+0+14+0−7+0+14+0
-7+0+14+0−7+0+14+0
Passaggio 6.2
Somma -7−7 e 00.
-7+14+0−7+14+0
Passaggio 6.3
Somma -7−7 e 1414.
7+07+0
Passaggio 6.4
Somma 77 e 00.
77
77