Esempi
S([abc])=[a-2b-c3a-b+2ca+b+2c]S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦
Passaggio 1
Il nucleo di una trasformazione è un vettore che rende la trasformazione uguale al vettore zero (la pre-immagine della trasformazione).
[a-2b-c3a-b+2ca+b+2c]=0⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦=0
Passaggio 2
Crea un sistema di equazioni a partire dall'equazione del vettore.
a-2b-c=0a−2b−c=0
3a-b+2c=03a−b+2c=0
a+b+2c=0a+b+2c=0
Passaggio 3
Write the system as a matrix.
[1-2-103-1201120]⎡⎢
⎢⎣1−2−103−1201120⎤⎥
⎥⎦
Passaggio 4
Passaggio 4.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
Passaggio 4.1.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,1 a 0.
[1-2-103-3⋅1-1-3⋅-22-3⋅-10-3⋅01120]
Passaggio 4.1.2
Semplifica R2.
[1-2-1005501120]
[1-2-1005501120]
Passaggio 4.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Passaggio 4.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1-2-1005501-11+22+10-0]
Passaggio 4.2.2
Semplifica R3.
[1-2-1005500330]
[1-2-1005500330]
Passaggio 4.3
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Passaggio 4.3.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
[1-2-10055555050330]
Passaggio 4.3.2
Semplifica R2.
[1-2-1001100330]
[1-2-1001100330]
Passaggio 4.4
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
Passaggio 4.4.1
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
[1-2-1001100-3⋅03-3⋅13-3⋅10-3⋅0]
Passaggio 4.4.2
Semplifica R3.
[1-2-1001100000]
[1-2-1001100000]
Passaggio 4.5
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
Passaggio 4.5.1
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
[1+2⋅0-2+2⋅1-1+2⋅10+2⋅001100000]
Passaggio 4.5.2
Semplifica R1.
[101001100000]
[101001100000]
[101001100000]
Passaggio 5
Use the result matrix to declare the final solution to the system of equations.
a+c=0
b+c=0
0=0
Passaggio 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[-c-cc]
Passaggio 7
Write the solution as a linear combination of vectors.
[abc]=c[-1-11]
Passaggio 8
Write as a solution set.
{c[-1-11]|c∈R}
Passaggio 9
The solution is the set of vectors created from the free variables of the system.
{[-1-11]}
Passaggio 10
Il nucleo di S è il sottospazio {[-1-11]}.
K(S)={[-1-11]}